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Abstract: Active optics techniques in astronomy provide high imaging quality. This paper is dedicated
to highly deformable active optics that can generate non-axisymmetric aspheric surfaces—or freeform
surfaces—by use of a minimum number of actuators. The aspheric mirror is obtained from a single
uniform load that acts over the surface of a closed-form substrate whilst under axial reaction to
its elliptical perimeter ring during spherical polishing. MESSIER space proposal is a wide-field
low-central-obstruction folded-two-mirror-anastigmat or here called briefly three-mirror-anastigmat
(TMA) telescope. The optical design is a folded reflective Schmidt. Basic telescope features are
36 cm aperture, f /2.5, with 1.6◦ × 2.6◦ field of view and a curved field detector allowing null
distortion aberration for drift-scan observations. The freeform mirror is generated by spherical stress
polishing that provides super-polished freeform surfaces after elastic relaxation. Preliminary analysis
required use of the optics theory of 3rd-order aberrations and elasticity theory of thin elliptical plates.
Final cross-optimizations were carried out with Zemax raytracing code and Nastran FEA elasticity
code in order to determine the complete geometry of a glass ceramic Zerodur deformable substrate.
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1. Introduction

Technological advances in astronomical instrumentation during the second part of the twentieth
century gave rise to 4 m, 8 m and 10 m class telescopes that were completed with close loop active optics
control in monolithic mirrors [1], segmented primary mirrors [2] and segmented in-situ stressed
active optics mirrors [3]. Further advances on ground-based telescopes allowed developments of
adaptive optics for blurring the image degradation due to atmosphere. Both active and adaptive optics
provided milestone progress in the detection of super-massive black holes, exoplanets and large-scale
structure of galaxies.

This paper is dedicated to highly deformable active optics that can generate non-axisymmetric
aspheric surfaces—or freeform surfaces—by use of a minimum number of actuators: a single uniform
load acts over the monolithic surface of a closed-form substrate whilst under reaction to its elliptical
perimeter ring. These freeform surfaces are the basic aspheric components of dispersive/reflective
Schmidt systems. Both reflective diffraction freeform gratings and freeform mirrors have been
investigated by Lemaitre [4].

MESSIER proposal is a wide-field low-central-obstruction folded-two-mirror-anastigmat or here
called briefly three-mirror-anastigmat (TMA) telescope based on a folded reflective Schmidt optical
design. It is dedicated to the survey of extended astronomical objects with extremely low surface
brightness. The proposal name is in homage to French astronomer Charles Messier (1730–1817)
(Figure 1) who published the first astronomical catalogue of nebulae and star clusters. The catalogue
was known as Messier objects—for instance, M1 for the Crab nebulae, M31 for the Andromeda galaxy
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and so forth—and distinguished between permanent and transient diffuse objects, then helped in
sensing or discovering comets.
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Figure 1. Charles Messier (1730–1817) (Wikipedia). 

MESSIER optical design would provide a high imaging quality without any diffractive spider 
pattern in the beams. A preliminarily ground-based prototype is planned to serve as a fast-track 
pathfinder for a future space-based MESSIER mission. The elliptical freeform mirror is generated by 
stress polishing and elastic relaxation technique [4,5].  

Super-polishing of freeform surfaces is obtained from spherical polishing after elastic relaxation. 
Preliminary analysis required use of the optics theory of 3rd-order aberrations and elasticity theory 
of thin elliptical plates. The final cross-optimizations were carried out with Zemax ray-tracing code 
and Nastran FEA elasticity code that provides accurate determination of the substrate geometry of a 
glass ceramic Zerodur material. 

2. Optical Design with a Reflective Schmidt Concept 

A reflective Schmidt design is a wide-field system and basically a two-mirror anastigmat. With 
one freeform surface correcting all three primary aberrations, such a system has been widely 
investigated as well as for telescope or spectrograph designs. The corrector mirror or reflective 
diffraction grating is always located at the centre of curvature of a spherical concave mirror. 

Compared to a Schmidt with a refractor-correcting element, which is a centred-system, a 
reflective Schmidt necessarily requires a tilt of the optics. The inclination of the mirrors then forms a 
non-centred-system. For an f/2.5 focal-ratio, the tilt angle of the aspheric primary mirror is typically of 
about 10° and somewhat depending on the FoV size. 

For a reflective Schmidt optical design, as MESSIER telescope proposal at f/2.5, a supplementary 
folding-flat mirror was found necessary. This third mirror provides: (i) an easy access to the detector 
for minimal central obstruction; and (ii) avoid any spider inside the beams that would cause 
diffractive artefact cross-like images at the focal image of bright stars. This led us to a three-mirror 
design or TMA telescope. 

Investigations of the plane-aspheric mirror have been discussed to define the best shape 
freeform surface of this non-centred system. The freeform surface is with elliptical symmetry and 
provides balance of the quadratic terms with respect to the bi-quadratic terms. 

Temporarily avoiding the folding-flat mirror, let assume a two-mirror non-centred system 
where the primary mirror M1 is a freeform and the secondary mirror M2 is a concave spherical 
surface of radius of curvature R. The input beams are circular collimated beams merging at various 
field angles of a telescope and define along the M1 freeform mirror an elliptical pupil due to 
inclination angle i. A convenient value of the inclination angle allows the M2 mirror to avoid any 
obstruction and provide focusing very closely to mid-distance between M1 and M2, then very near 
the distance R/2 from M1 (Figure 2). 

Figure 1. Charles Messier (1730–1817) (Wikipedia).

MESSIER optical design would provide a high imaging quality without any diffractive spider
pattern in the beams. A preliminarily ground-based prototype is planned to serve as a fast-track
pathfinder for a future space-based MESSIER mission. The elliptical freeform mirror is generated by
stress polishing and elastic relaxation technique [4,5].

Super-polishing of freeform surfaces is obtained from spherical polishing after elastic relaxation.
Preliminary analysis required use of the optics theory of 3rd-order aberrations and elasticity theory of
thin elliptical plates. The final cross-optimizations were carried out with Zemax ray-tracing code and
Nastran FEA elasticity code that provides accurate determination of the substrate geometry of a glass
ceramic Zerodur material.

2. Optical Design with a Reflective Schmidt Concept

A reflective Schmidt design is a wide-field system and basically a two-mirror anastigmat. With one
freeform surface correcting all three primary aberrations, such a system has been widely investigated
as well as for telescope or spectrograph designs. The corrector mirror or reflective diffraction grating is
always located at the centre of curvature of a spherical concave mirror.

Compared to a Schmidt with a refractor-correcting element, which is a centred-system, a reflective
Schmidt necessarily requires a tilt of the optics. The inclination of the mirrors then forms a
non-centred-system. For an f /2.5 focal-ratio, the tilt angle of the aspheric primary mirror is typically of
about 10◦ and somewhat depending on the FoV size.

For a reflective Schmidt optical design, as MESSIER telescope proposal at f /2.5, a supplementary
folding-flat mirror was found necessary. This third mirror provides: (i) an easy access to the detector
for minimal central obstruction; and (ii) avoid any spider inside the beams that would cause diffractive
artefact cross-like images at the focal image of bright stars. This led us to a three-mirror design or
TMA telescope.

Investigations of the plane-aspheric mirror have been discussed to define the best shape freeform
surface of this non-centred system. The freeform surface is with elliptical symmetry and provides
balance of the quadratic terms with respect to the bi-quadratic terms.

Temporarily avoiding the folding-flat mirror, let assume a two-mirror non-centred system where
the primary mirror M1 is a freeform and the secondary mirror M2 is a concave spherical surface of
radius of curvature R. The input beams are circular collimated beams merging at various field angles
of a telescope and define along the M1 freeform mirror an elliptical pupil due to inclination angle i.
A convenient value of the inclination angle allows the M2 mirror to avoid any obstruction and provide
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focusing very closely to mid-distance between M1 and M2, then very near the distance R/2 from M1
(Figure 2).Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW  3 of 15 

 

 
Figure 2. Schematic of a reflective two-mirror Schmidt telescope. The centre of curvature of the 
spherical mirror M2 is located at the vertex of the plane-aspheric freeform mirror M1. The incident 
beams have circular cross-sections with input pupil located at mirror M1. Deviation 2i occurs at the 
principal rays. The semi-field maximum angle—here assumed circular—is denoted φm. 

Let us denote xm and ym the semi-axes of the elliptic clear-aperture on M1 primary mirror. If the 
y-axis is perpendicular to the symmetry plane x, z of the two-mirror telescope, one defines 

Ω = R/4ym (1)

a dimensionless ratio Ω, where ym is the semi-clear-aperture of the beams in y-direction, that is half-
pupil size in y-direction. The focal-ratio of the two-mirror telescope is denoted f/Ω. 

It is the interesting to investigate the performance in the field of view of a 100% obstructed two-
mirror telescope which then is a centred system. Comparing the blur images, the free parameter is 
the ratio that characterize the meridian profile section of the primary mirror M1. This ratio, or aspect 
ratio, can be expressed by k = rO2/rm2 where rO is the radius of null-power zone and rm that of clear 
aperture. The blur residual sizes as a function of parameter k are displayed by Figure 3 [4,6]. 

  

Figure 2. Schematic of a reflective two-mirror Schmidt telescope. The centre of curvature of the
spherical mirror M2 is located at the vertex of the plane-aspheric freeform mirror M1. The incident
beams have circular cross-sections with input pupil located at mirror M1. Deviation 2i occurs at the
principal rays. The semi-field maximum angle—here assumed circular—is denoted ϕm.

Let us denote xm and ym the semi-axes of the elliptic clear-aperture on M1 primary mirror. If the
y-axis is perpendicular to the symmetry plane x, z of the two-mirror telescope, one defines

Ω = R/4ym (1)

a dimensionless ratio Ω, where ym is the semi-clear-aperture of the beams in y-direction, that is
half-pupil size in y-direction. The focal-ratio of the two-mirror telescope is denoted f /Ω.

It is the interesting to investigate the performance in the field of view of a 100% obstructed
two-mirror telescope which then is a centred system. Comparing the blur images, the free parameter
is the ratio that characterize the meridian profile section of the primary mirror M1. This ratio, or aspect
ratio, can be expressed by k = rO

2/rm
2 where rO is the radius of null-power zone and rm that of clear

aperture. The blur residual sizes as a function of parameter k are displayed by Figure 3 [4,6].
In order to avoid 100% beam obstruction the primary mirror M1 must be tilted at a convenient

inclination angle i. It can be shown that the shape ZOpt of the M1 freeform mirror is an anamorphic
shape and expressed in first approximation by [4]

ZOpt '
s

cos i

[
3

27Ω2R
(h2x2 + y2)− 1

8R3 (h
2x2 + y2)

2
]

, with h2 = cos2 i, (2)

where dimensionless coefficients could be considered as an under-correction parameter slightly smaller
than unity (0.990 < s < 1). In fact, for a tilt angle of M1—that is a non-centred system—coefficients does
not operates and must just be set to s = 1. A preliminary analysis of the two-mirror system shows that
for four direction points of a circular field of view, the largest blur image occurs at the largest deviation
angle of the field along the x-axis. In y-direction sideways blur images have an average size.

The length from the vertex O of the M1 mirror to the focus F can be derived as [4]

OF =
1
2

(
1 +

3
26Ω2

)
R (3)

showing that this distance is slightly larger than the Gaussian distance R/2. The optimal size of blur
images for an f /4 two-mirror anastigmat telescope over the field of view are displayed by Figure 4.
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zone. Plotted parameters are: radius of curvature R of M2 spherical concave mirror, Ω of the aperture-
ratio f/Ω, angle of semi-field of view φ, radial and tangential blur sizes ℓr, ℓt and diameter of best blur 
size d. [1st line] Spot diagram of blur images on a sphere centred at the centre of curvature of M1 
mirror that provides stigmatism on-axis. [2nd line] Spot diagram of blur images on a sphere centred 
at the centre of curvature of M1 mirror that provides the best images. [Bottom line] Spots with k = 3/2 
for field angles φ/φm varying from 0 to 1, obtained by using a slight under-correction factor of M1 
mirror s = cosφm and defocus 𝛥f. The three rows of spot images are at same scale. Lemaitre showed 
that [6] the final diameter of residual blurs—or angular resolution of reflective Schmidt—is then dResol = 3 
φm2/256Ω3. 
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Figure 3. Off-axis 5th-order aberration residuals of a two-mirror centred-system reflective
Schmidt—100% obstruction—as a function of the k-ratio, k = rO

2/rm
2, that defines location of the

null-power optical zone. Plotted parameters are: radius of curvature R of M2 spherical concave mirror,
Ω of the aperture-ratio f /Ω, angle of semi-field of view ϕ, radial and tangential blur sizes `r, `t and
diameter of best blur size d. [1st line] Spot diagram of blur images on a sphere centred at the centre of
curvature of M1 mirror that provides stigmatism on-axis. [2nd line] Spot diagram of blur images on a
sphere centred at the centre of curvature of M1 mirror that provides the best images. [Bottom line] Spots
with k = 3/2 for field angles ϕ/ϕm varying from 0 to 1, obtained by using a slight under-correction
factor of M1 mirror s = cosϕm and defocus ∆f. The three rows of spot images are at same scale. Lemaitre
showed that [6] the final diameter of residual blurs—or angular resolution of reflective Schmidt—is then
dResol = 3 ϕm

2/256Ω3.
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having principal lengths in a cosi ratio. One shows that whatever x or y directions the null-power 
zone is outside the M1 clear-aperture and in a geometrical ratio 𝜌 =3/2 𝜌  − 1.224𝜌  since 𝑘 = 3/2. 

Dimensionless coordinates z, ρ have been normalized for a clear semi-aperture ρ = 1, presently 
in the y-direction, with a maximum sag 

z(1) = 3ρ2 – ρ4 = 2, (4)

which leads to algebraically opposite curvatures d2z/dρ2 for ρ = 0 and ρ = 1. 
The conclusions from the best optical design of an all-reflective two-mirror Schmidt telescope 

with optimal angular resolution are the followings [4,6]: 

Figure 4. Best residual aberrations of an f /4 two-mirror reflective Schmidt (Ω = 4) in the non-centred
system form. Inclination angle i = 5.7◦. Semi-field of view ϕm = 2.5◦. The under-correction parameter is
just set to s = 1. The radius of curvature of the spherical focal surface is also given by RFoV = OF in
Equation (3). The largest blur image corresponds to that with highest deviation of the FoV.
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Preliminarily analyses also show that the M1 mirror shape has opposite signs between quadratic
and bi- quadratic terms. The shape is given by Equation (2) and represented by Figure 5 in either
directions x or y in dimensionless coordinates of ρ.
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Figure 5. The freeform primary mirror, of biaxial symmetry, is generated by homothetic ellipses having
principal lengths in a cosi ratio. One shows that whatever x or y directions the null-power zone is
outside the M1 clear-aperture and in a geometrical ratio ρ0 =

√
3/2 ρmax ' 1.224ρmax since k = 3/2.

Dimensionless coordinates z, ρ have been normalized for a clear semi-aperture ρ = 1, presently in
the y-direction, with a maximum sag

z(1) = 3ρ2 − ρ4 = 2, (4)

which leads to algebraically opposite curvatures d2z/dρ2 for ρ = 0 and ρ = 1.
The conclusions from the best optical design of an all-reflective two-mirror Schmidt telescope

with optimal angular resolution are the followings [4,6]:

1. For a circular incident beam, the elliptical clear-aperture of the primary mirror is
√

3/2 times smaller to
that of the null-power zone ellipse.

2. The angular resolution dNC of a reflective non-centred two-mirror telescope is

dNC =
3

256Ω3

(
3
2

i + ϕm

)
ϕm (5)

3. The primary mirror of a non-centred two-mirror system provides the algebraic balance of second derivative
extremals. Therefore, its central curvature is opposite to the local curvatures at edge.

3. Elasticity Design and Deformable Primary-Mirror Substrate

Active optics preliminarily analysis of a Schmidt-type primary mirror M1 leads to investigate
deformable substrates and use of stress mirror polishing (SMP). We consider hereafter the thin plate
theory of plates with development to elliptical plates.

Let consider the system coordinates of an elliptical plate and denote n the normal to the contour
C of the surface. Equation of C is represented by (Figure 6)
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Figure 6. Top view of an elliptical vase form. The clear aperture of M1 mirror is included into a smaller
surface to that of a constant thickness plate delimited by elliptical contour C (dotted line) and defined by
semi axe radii (ax, ay). An outer ring is built-in to the plate at contour C where n-directions are normal
to C. The outer ring is delimited by a homothetic elliptic contour C′ defined by semi-axes radii (bx, by).

The bi-Laplacian equation of the flexure where a uniform load q is applied to the inner plate
is [4,7]

∇4z ≡ ∂4z/∂x4 + 2∂4z/∂x2∂y2 + ∂4z/∂y4 = q/D, (6)

where the rigidity D is [4,7]
D = Et3/[12(1 − ν2)], (7)

and E the Young’s modulus, ν the Poisson ratio and t the constant thickness of the plate over C.
The equation of homothetic ellipses C(ax, ay) or C′(bx, by) can be expressed by quadratic forms.

Ellipse curve C writes
x2

a2
x
+

y2

a2
y
− 1 = 0. (8)

Remaining within the optics theory of third-order aberrations, such optical freeform surfaces can
be obtained from elastic bending by mean of the following conditions:

• a flat and constant-thickness plate, t = constant,
• a uniform load q applied to inner surface of substrate,
• and a link at the edge to an elliptic contour expressed by a built-in edge, or a clamped edge, that is

where the slope is null all along the contour C of the plate.

Assuming that the three conditions below are satisfied, the analytic theory of thin plates allows
deriving a biquadratic flexure ZElas(x,y) in the form [4,7],

ZElas = z0

(
1− x2

a2
x
− y2

a2
y

)2

, (9)

where z0 is the sag at origin and where ax and ay are semi-axes corresponding to the elliptic null-power
zone of the principal directions of contour. The flexural sag z0 is obtained from substitution of
Equation (9) into biharmonic Equation (6). This leads to

z0 =
q

8D
a4

xa4
y

3a4
x + 2a2

xa2
y + 3a4

y
. (10)

The null-power zone contour C is larger by a factor
√

3/2 to that of the clear-aperture (cf. Figure 3).
The dimensions of semi-axes ax and ay at C of the built-in ellipse – or null-power zone –relatively

to that of clear-semi-apertures xm and ym are

a2
x = 3x2

m/2 = 3y2
m/2 cos2 i and a2

y = 3y2
m/2. (11)
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From Equations (2) and (1), in setting s = 1 and x = 0 and for the built-in radius y =
√

3/2ym of
the vase form, we obtain the amplitude of the flexure z0 in Equation (9), as

z0 =
9ym

211Ω3 cos i
. (12)

From Equations (10)–(12) we obtain, after simplification, the thickness t of the inner plate

t = 8Ω
[

2(1− υ2 cos i)
3(3 + 2 cos2 i + 3 cos4 i)

q
E

]1/3

ym. (13)

This defines the execution conditions and elasticity parameters of an elliptical plate where the
clear aperture of primary mirror M1 uses a somewhat smaller area than the total built-in surface as
delimited by ellipse C.

The conclusions from a best optical design of the primary mirror M1 of a two-mirror Schmidt
telescope, as corresponding to the profile displayed by Figure 3, are as follow [4]:

1. A built-in elliptic vase-form is useful to obtain easily the primary mirror of a two-mirror anastigmat.
2. The elliptic null-power zone at the plate built-in contour is

√
3/2 times larger than that of the elliptic

clear-aperture of the primary mirror.
3. The total sag of the built-in contour is 9/8 times larger than that of its optical clear-aperture.

The optimization of a built-in substrate, of course, requires losing some of the outer surface which
then is not usable by an amount of 33% outside the clear-aperture area. It is clear that a flat deformable
M1 substrate, conjugated with an elliptic inner contour, provides most interesting advantages in
practice with a built-in condition (Figure 7).
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Figure 7. Section of an elliptical closed vase form. This form is made two vase-forms oppositely jointed
together in a built-in link. The uniform load q is applied all inside the deformable substrate over the
elliptical contour C of semi-axe radii (ax, ay). Outer contour C′ can be made circular if (bx, by) are
sufficiently larger than semi-axe radii of C.

An extremely rigid outer ring designed for a closed vase form, while polished flat at rest, allows
the primary mirror to generate by uniform loading a bi-symmetric optical surface made of homothetic
ellipses (Figure 8).

The case of a perfect built-in condition was applied to the design and construction of several
aspherized grating spectrographs (4) such as UVPF of CFHT, MARLYs of OHP and PMO, CARELEC
of OHP, OSIRIS of ODIN space mission. It was recently applied to the design and construction of
aspherized gratings for the FIREBall balloon experiment [8] using a 1-meter telescope and multi-object
spectrograph. The processing was as follows: (i) A plane reflective diffraction grating was first
deposited on a deformable stainless steel matrix without stressing; (ii) the freeform bi-quadratic
surface of this deformable matrix was bent by inner air pressure loading; (iii) the freeform gratings
were obtained from resin replication during controlled stressing onto Zerodur vitro ceramic rigid
substrate; and (iv) final aspheric shape of the gratings was obtained by elastic relaxation [4] (Figure 9).
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Figure 9. [Left] Active optics aspherization of gratings achieved by double replication technique of
a metal deformable matrix. A quasi-constant thickness active zone is clamped—or built-in—to a rigid
outer ring and is closed backside for air pressure load control. [Centre]. For FIREBall, the whole
deformable matrix is an axisymmetric piece expect for its inner built-in contour which is elliptical.
[Right] Deformable matrix with the grating before replication (LAM).

Compared to the case of or a deformable M1 mirror—or a deformable matrix—where a perfect
built-in condition leads to some outside loosen optical area of the freeform (a clear aperture somewhat
smaller to that of the built-in zero power zone), we investigate hereafter a closed-form substrate with a
radially thinned outer elliptic cylinder. The optimized freeform surface for MESSIER proposal will then
provide almost the telescope theoretical angular resolution by use of a semi-built-in edge condition of the
mirror substrate.

4. A TMA Telescope Proposal for MESSIER

Our proposal of MESSIER experiment is named in honour to French astronomer Charles
Messier who started compiling in 1774 his famous Messier Catalogue of diffuse non-cometary objects.
For instance the Crab Nebulae, named object ”M1,” is a bright supernova remain recorded by Chinese
astronomer in 1054. The present MESSIER proposal is dedicated to the detection of extremely low
surface brightness objects. A detailed description of the science objectives and instrument design for
this space mission can be found in [9].

A three mirror anastigmat (TMA) telescope proposal should provide detection of extremely low
surface brightness. MESSIER science goals require that any optical design should deliver a detection
as a detection as low as 32 magnitude/arcsec2 in the optical range. A space-based telescope option
should provide 37 magnitude/arcsec2 in UV at 200 nm. The preliminary ground-based telescope
here investigated as a prototype should be useful for spectral ranges in blue, red and infrared regions.
The main features require a particular optical design as follow:

1. a wide field three mirror anastigmat telescope with fast f-ratio,
2. a distortion-free field of view at least in one direction,
3. a curved-field detector for a natural curved reflective Schmidt,
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4. a time delay integration by use of drift-scan techniques,
5. no spider in the beams can be placed in the optical train.

The final space-based proposal, restrained to extremely low brightness objects in ultraviolet
imaging, would be a 50-cm aperture telescope. For the optical range, our preliminary plan for
MESSIER is to develop and build a 30-cm aperture ground-based telescope fulfilling all above features
of the optical design. Preliminary proposed designs can be found in [5,10].

4.1. Optical Design and Ray Tracing Modelling

Before studying a space model, we propose development of a ground-based prototype telescope
is a three-mirror anastigmat (TMA) with an f-ratio at f /2.5.

One may notice a classical design as a two-element anastigmat design where the first optical
element is a refractive aspherical plate. Minimization of field aberrations is achieved by a balance of
the slopes—that is balance of 1st-order derivative—where sphero-chromatism variations are dominating
aberration residuals.

Now using a mirror—instead of a refractive plate—as a first element M1 of a two-mirror
anastigmat, the best angular resolution over the field of view is achieved by a balance of meridian
curvatures—that is balance of the 2nd-order derivative—of the aspherical mirror or diffraction grating [4].

The proposed design is made of freeform primary mirror M1, followed by holed flat secondary
mirror M2 and then a spherical concave tertiary mirror M3. The centre of curvature of M3 is located at
the vertex of M1which is a basic configuration for a reflective Schmidt concept. The unfolded version,
with only two mirrors, do not alter anastigmatic image quality (Figure 13). The optics parameters are
optimized for a convex field of view (Table 1). The three-mirror system gives unobstructed access to
detector and avoid any spider in the field of view (Figures 10 and 11).

Table 1. MESSIER optical design parameters.

Telescope angular resolution 2 arcsec

On-axis circular beam entrance 256 mm

Focal length f ′ 890 mm

Focal-ratio f/Ω f/2.5

Deviation angle 2i 22◦

M1 Elliptic clear aperture 2xm × 2ym 356 × 362.7

Angular FOV 2ϕmx × 2ϕmy 1.6◦ × 2.6◦

Linear FOV 25 × 40 mm2

M3 mirror curvature radius R3 −1769 mm

UBK7 filters & SiO2 cryostat—Thicknesses 2 & 5 mm

Detector field curvature radius RFO −890 mm
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Figure 11. [Left] MESSIER layout reflective TMA in the symmetry plane. [Right] 3-D view with
detector (LAM).

The primary mirror surface M1 can be defined by the aspheric anamorphic equation as derived
from Zemax optics ray-tracing code—which is somewhat similar to Equaiton (2)—and denoted

ZOpt =
Cxx2 + Cyy2

1 +
√

1− (1 + Kx)C2
xx2 − (1 + Ky)C2

yy2
+ AR[(1− AP)x2 + (1 + AP)y2]

2
, (14)

where now in all this section with Zemax code (y, z) is the symmetry plane of the telescope.
Restraining to the case of a simply bi-curvature surface for the first quadratic term, then setting

Kx = Ky = −1, denominator reduces to unity. The result from Zemax modelling optimization provides
the four coefficients, Cx =−3.598× 10−6 mm−1, Cy =−3.467× 10−6 mm−1, AR = 2.203× 10−11 mm−3

and AP = −0.01854.
The total sag of clear aperture in x-direction (i.e., off-symmetry plane) for xmax = 178 mm is then

ZOpt−max =−35.70 µm. Zemax iterations lead to RMS residual blur images in agreement with predicted
angular resolution (Figure 12).
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Results from Zemax modelling and spot diagram one shows that the maximum RMS blur
residuals is φZemax = 5.5 µm or dNC = 1.27 arcsec. From Equation (5) and a same diagonal semi-FOV
(1.52◦) and same parameters in Table 2, one also obtains for MESIER proposal the theoretical angular
resolution [4,6],

dNC =
3

256Ω3

(
3
2

i + ϕm

)
ϕm = 1.29 arcsec, (15)

showing that results from modelled and theoretical angular resolutions are similar.
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One of the key requirements was to provide a free distortion design. Over a diagonal field of view
of maximum radius ϕm = 1.5◦ it was shown that for a curved FoV distortion ∆ϕ/ϕm remains smaller
than 2 × 10−4 and thus is negligible.

The telescope image quality is estimated through its spot sizes in the diagram. Diagram indicates an
image quality convenient for seeing limited conditions and close to the diffraction limit. Contribution of
residual aberrations is 1.3 arcsec RMS over the field of view.

Residual spot radius values take into account a UBK7 colour filter 2 mm thick where a spectral
band can be selected in a filter wheel with 5 wavebands. An optional 5 mm thickness SiO2 cryostat
window is planned for optical design of the ground-based prototype telescope (Table 2).

Table 2. Image quality of the telescope with use of filters.

Waveband [nm] Spot RMS Radius in the FoV Centre [µm] Spot RMS Radius at the FoV Edge [µm]

350–410 1.8 3.7

400–560 2.3 3.8

550–700 1.7 3.4

680–860 1.7 3.3

860–980 1.7 3.3

4.2. Elasticity Modelling of a Freeform Primary Mirror

The requested aspheric surface with non-rotational symmetry of the primary mirror surface refers
to an optical surface also called a freeform surface. The present freeform surface for our MESSIER
primary mirror is made of homothetic-ellipse iso-level lines. This surface is to be designed through active
optics methods where the deformable substrate is aspherized by a plane surfacing under stress—an
active optics method also called stress mirror polishing (SFP). The principle uses a uniform load
applied and controlled inside a closed vase form whilst a plane polishing is operated with a full-size tool.
The final process delivers the required shape after elastic relaxation of the load [5,6,10,11].

The closed vase form—or closed biplate—is made of facing twin elliptical vase form blanks in Zerodur
assembled together at the end of their outer rings through a layer of 100–150 µm thickness 3M DP490
Epoxy, where elasticity constants are Poisson’s ratio ν = 0.38 and Young’s modulus E = 659 MPa [12].
Elasticity constants of the blanks in Zerodur are Poisson’s ratio ν = 0.243 and Young’s modulus
E = 90.2 GPa (Figure 13).
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Figure 13. Elasticity design of primary mirror substrate as a closed vase form or closed biplate made of
two identical vase vitro-ceramic material linked together with epoxy. The radial thicknesses (tx, ty)
and height ` of the outer cylinder provides a semi-built-in boundary which somewhat reduces the
size of inner ring radii (ax, ay) with respect to that of clear aperture (xm, ym). NB.: From anamorphose
xm/ym = ax/ay = tx/ty = cos i.

Modelling with Nastran code led us to make cross optimizations with Zemax code. The intensity
of uniform loading q and final geometry of the closed vase form mirror substrate are displayed by Table 3.
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The final finite element modelling by Pascal Vola display the displacements (Figure 14) and stresses
(Figure 15).

Table 3. Uniform load and geometry of closed vase form deformable substrate of MESSIER primary
mirror. Substrate in Zerodur vitro-ceramic. Mirror aspherization is achieved after elastic relaxation
from SMP method and full-size tool plane polishing.

Uniform load of constant pressure q = 0.687 × 105 Pa

Axial thickness of parallel plates t = 18 mm each

Inner axial separation of closed plates 20 mm

Outer thickness of closed form 56 mm

Inner diameters of elliptic cylinder 2ax × 2ay = 356 × 362.7 mm

Cylinder radial thicknesses tx, ty = 18 and 18.33 mm

Distance between middle surface of plates ` = 38 mm

Inner and outer round-corner radii RC = 8 mm and 16 mmMath. Comput. Appl. 2018, 23, x FOR PEER REVIEW  13 of 15 
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Figure 14. Displacements of M1 primary mirror substrate as a closed vase form with FEA Nastran code.
All elements are hexahedra. Boundaries are expressed at the origin of displacements x = y = z = 0
and freedom along three radial directions in plane x-y both at back surface of the figure. Total axial
displacement 69.2 µm (LAM).
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Figure 15. Stress distribution of the closed vase form during stress polishing. The maximum tensile stress
arises along the internal round corners of the elliptical rings with σmax = 6.92 MPa. For Schott-Zerodur
this value is much smaller than the ultimate strength σ = 51 MPa for a 1-month loading time duration [4].
One may notice that at the symmetry plane epoxy link reduces to σ ' 1 MPa (LAM).
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The general law of algebraically balancing the second-order derivatives applies on principal
directions of a pupil mirror—as stated by Equation (4)—for a circular or elliptical clear aperture.
In dimensionless coordinates and any x or y orthogonal directions, if the clear aperture radii is denoted
ρm, then we must obtain algebraically opposite local curvature values for ρ = 0 and ρ = ρm.

One has shown [4] that with a perfect built-in condition – that is for a closed vase form with
moderate ellipticity and a ring of large radial thickness, say, at least five times larger than the plate
axial thickness—the flexure provides an elliptic null-power zone radius ρ0 where the size of the clear
aperture radius ρm is in the ratio ρ0/ρm =

√
3/2 ' 1.224. This means that the useful optical area is

convenient for ρ ∈ [ρm, ρ0] but unacceptable for ρ ∈ [ρm, ρ0].
From our cross optimizations with Zemax and Nastran codes the ring of the closed vase form

provides a noticeable decrease in flexural rigidity, which is equivalent to a semi-built-in condition. Then,
compared to a perfect built-in assembly and from our results described in latter subsection, the radii
ratio between null-power zone ρ0 and clear aperture ρm has become after optimized modelling

ρ0/ρm = 1.118 (16)

This ratio is significantly smaller than 1.224. Then from Zemax ray tracing optimizations, we now
take benefit of an important result: the angular resolution is not substantially modified in using the
optical surface also up to the inner zone of the ring. The flat deformable surface of the closed vase
form requires use of stress polishing by plane super-polishing, which then avoids any ripple errors of
the freeform surface.

Closed vase form Messier primary mirror can be aspherized up to its inner part of the semi-built-in
elliptic ring without any lost in optical area and angular resolution.

4.3. Optical Testing of MESSIER Freeform Primary Mirror

Optical testing of the freeform primary mirror must be a precise measurement because of its
anamorphic shape. From Equation (14) the clear aperture shape presents a total sag of ZOpt−max =
−35.70 µm for xmax = 178 mm in x-direction, that is in the off-symmetry telescope plane. Several
optical tests could be considered mainly based on a null-test system [6]. For instance this involves lens
compensators [13] and computed-generated holograms [14] and their combinations.

We adopted a singlet lens compensator as component already existing at the lab and providing
exactly the correct compensation level of the rotational symmetry mode, that is, 3rd-order spherical
aberration compensation of M1 primary mirror. This lens, also called Fizeau or Marioge lens,
is plano-convex made in Zerodur-Schott with following parameters, axial thickness tL = 62 mm,
R1L = ∞, R2L = 1180 mm, DL = 380 mm, used on elliptical clear aperture 356 × 362.7 mm. The axial
separation to primary mirror is 10 mm. Remaining aberration is then a balanced anamorphose term to
be accurately calibrated by He-Ne interferometry (Figure 16).

Another important feature of MESSIER telescope proposal is the selection of a curved detector,
RFOV ' −f = −R3/2 (cf. Table 1), which allows a distortion free design over an active area of 40 ×
25 mm2. This technology is presently under development by use of either variable curvature mirrors
(VCMs) or toroid deformed mirrors [4,5]. References can be found on curved detectors in Muslimov
paper [15].
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Figure 16. Null-test singlet-lens aberration compensator for MESSIER freeform primary mirror.
(a) Scheme mounting of the plano-convex lens that compensate for spherical aberration of the primary
mirror surface. (b) Simulated He-Ne interferogram of remaining non-axisymmetric fringes to be
calibrated. (c) Interferences can be obtained from a two-arm interferometer (LAM).

5. Conclusions

Modelling of freeform surfaces by development of active optics techniques or stress mirror polishing
provides extremely smooth surfaces. Generated from elastically relaxed plane or spherical polishing
with full-size aperture tools these surfaces are free from ripple errors.

Applied to MESSIER TMA telescope proposal the best angular resolution of a non-centred optical
designs corresponds to a primary mirror freeform optical surface made of homothetic elliptical isolevel
lines. It has been shown that this leads to algebraic balance of local curvatures – that is balance of second
derivatives of the optical surface

Beside the facility to obtain easily a freeform aspheric from elastic relaxation of a closed vase form
primary mirror, MESSIER proposal would also benefit from free distortion because of its naturally
curved FoV. This field curvature shall be associated to a curved detector.

Author Contributions: E.M. investigated the telescope optical design with Zemax raytracing optimization and
developed a useful optical quasi-null-test optimization for the freeform mirror. P.V. developed an accurate finite
element analysis of the closed vase form mirror with Nastran code for stress polishing and elastic relaxation
technique. G.R.L. established the law that applies for the optimal shape to be given freeform mirrors and
freeform gratings of reflective Schmidt systems, developed a raytracing code with Seidel modes freeform surfaces,
investigated the telescope optical design with Zemax code anamorphic surface optimizations, and introduced the
concept of closed vase form mirror.
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