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Abstract: Elasticity theory and active optics led us to the discovery of three geometrical configurations
of variable curvature mirrors (VCMs) that are either cycloid-like or tulip-like thickness distributions.
Cycloid-like VCMs are generated by a uniform load—air pressure—applied over the mirror rear
surface, and reacts without any bending moment along its circular contour. This particular VCM
configuration is of practical interest because it smoothly generates accurate optical curvatures, varying
from plane at rest to spherical curvatures up to f/2.9 over 16-mm aperture under 6.5-bar air pressure.
Starting from the thin plate theory of elasticity and modeling with NASTRAN finite element analysis,
one shows that 3-D optimizations—using a non-linear static flexural option—provide an accurate
cycloid-like thickness distribution. VCM elasticity modeling in quenched stainless steel–chromium
substrates allows the obtaining of diffraction-limited optical surfaces: Rayleigh’s criterion is achieved
over a zoom range from flat to f/3.6 over 13-mm clear aperture up to 6-bar loading. These VCMs
were originally developed and built at the Marseille Observatory in 1975 and implemented as a
cat’s-eye mirror of IR Fourier-transform interferometers for laboratory recording of fast events in
gas molecular spectroscopy. Later, for high-angular resolution astronomy with the ESO VLTI array—
an interferometer made of 8 m Unit Telescopes (UTs) and 1.8 m Auxiliary Telescopes (ATs)—such
VCMs were inevitable components to provide in a 3” co-phased field-of-view since 1998. They were
implemented (1) as cat’s eye mirrors of the height delay-lines beam recombination lab and (2) as
ATs mirror-pair for output pupil conjugation of the movable x–y baseline. From the ESO-AMU
approved convention of making 10 VCM spares up to 2024, the present modeling should provide a
diffraction-limited extended field-of-view. It is pure coincidence that present results from modeling
with an outer collarette are identical to results from analytic theory without collarette.

Keywords: active optics; variable curvature mirrors; modeling; actuator; elasticity theory; applied
mechanics; zoom mirrors

1. Introduction

Geometrical deformable configurations able to generate variable curvature mirrors
(VCMs) were discovered by Lemaitre in 1976 [1]. Three configurations were derived from
elasticity theory of small deformations of thin plates that have variable thickness distributions
(VTD). Such VCMs—sometime called zoom mirrors—have either a cycloid-like form or tulip-
like form thickness distributions.

The cycloid-like form manifold requires a uniform load—i.e., a gas or fluid pressure—
applied over the mirror back surface that reacts without any bending moment along its
circular contour. This VCM configuration is of practical interest because it can easily
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generate accurate optical curvatures varying from the plane at rest up to f /3.5 or f /3 when
under stress.

The only other manifolds are two tulip-like forms that require, for static equilibrium, a
combination of two sets of forces: a central axial force, a uniform load applied over the back
surface, and an axial perimeter ring force. These VCM configurations may also provide a
large zoom range up to f /3.5 or f /3 when under stress.

For such a large zoom range, Ferrari & Lemaitre [2] and Ferrari [3] carried out analytic
investigations with the elasticity theory of large deflections of the plates. This theory takes
into account the stresses at the middle surface of the plate. A review of both small and
large deflection theories, and the construction results obtained with VCMs can be found in
Astronomical Optics and Elasticity Theory—Active Optics Methods by Lemaitre [4].

These developments, carried out at the Marseille Observatory, which later merged at
LAM, were applied to the construction of cycloid-like form VCMs:

• for the Bellevue-CNRS lab and LPMA-Jussieu-Université lab as a cat’s-eye mirror of two-
arm IR Fourier-transform interferometers, originally by Connes [5] and, subsequently,
as a fast event recording with the large molecular spectroscopy interferometer by
Camy-Peyret, S. Payan et al. [6],

• for the CERGA-GI2T two-mirror 1.5-m telescope array by Labeyrie [7], including a
cat’s-eye mirror mounted on a delay line at the REGAIN interferometer by Mourard,
Thureau et al. [8],

• for the ESO-VLTI high-angular resolution astronomy, as the cat’s-eye mirrors of delay
lines beam the recombination of the four 8-m telescopes (UT) and four 1.8-m telescopes
(AT)—8 VCMs—as the extended-field-of-view system, and as the mirror-pair system.
The AT x–y positions require output pupil conjugations of an observed object and a ref-
erence star—8 VCMs—for the central lab input pupil. The field-of-view considerations
of the Paranal VLTI array were initiated by Beckers [9,10], and its development by von
der Luehe et al. [11] and Glindemann et al. [12]. In addition to the on-axis cophasing
by delay-lines, cat’s eye mirrors, i.e., VCMs realizing the cophasing of the field of view
up to 3 arcsec. Dérie et al. [13], Koehler [14], and Gonté et al. [15] developed the
delay-line telescope systems with the implementation of 16 VCMs.

In order to improve the mechanical design of cycloid-like VCMs, we presently show,
from modeling with MSC-NASTRAN finite element analysis (FEA) code, as performed by
one of us (Vola, in this paper), that 3-D optimizations with the non-linear static solution
sequence SOL 106 can provide an accurate cycloid-like thickness distribution. The elasticity
design of such VCM metal substrates allows the obtaining of diffraction-limited optical
surfaces over a zoom range from a flat surface at rest to a convex surface when actively bent.

First-order modes of the triangle optical matrix, characterizing a wavefront shape
are the curvature mode (Cv-1) and tilt mode (Tilt-1). These are the two fundamental
modes involved in Gaussian optics. As a tilt mode is trivially obtained by a global rotation
of a rigid substrate, investigations to achieve elastic deformation modes only reduce to
deformable mirrors generating a Cv-1 curvature mode.

Let us denote z(r), the figure achieved by the flexure of a circular plate, which is flat at
rest. In thin plate theory of small deformations, the Cv-1 curvature mode is represented by a
parabolic flexure

z = A20r2 ≡ 1
2R

r2, (1)

where A20 is a constant and 1/R is the variable optical surface curvature.
One describes hereafter the two classes of thickness that can provide a curvature mode

Cv 1 with the thin plate theory. These are constant thickness distribution (CTD) and variable
thickness distribution (VTD) ([4] chapter 2).
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2. Thin Circular Plate VCMs and Small Deformation Theory

Let us consider a plane circular plate—holed or plain—with a constant thickness, t,
having a rigidity, D, classically expressed by

D = Et3/[12(1− ν2)] (2)

where E and ν are the Young modulus and Poisson’s ratio, respectively. If an external pair
of concentric circle forces or a bending moment are applied to the perimeter region without
a surface load (i.e., q = 0), then bilaplacian Poisson’s equation with respect to the flexure z
of the plate is

∇2∇2z(r) = 0, (3)

whose general solution

z = A40r4 + B20 + C20 ln r + D20r2 + E20r2 ln r (4)

contains the curvature term D20. The external forces taken into consideration by the
bilaplacian can be a central one, a uniform distribution of forces onto a concentric circle,
and uniform radial moments onto the inner and outer edges. Choosing the deformation
origin at the plate vertex leads to set B20 = 0.

2.1. VCM of Constant Thickness Distribution—CTD

Considering the case of plain plates, flexural curvature modes Cv-1 for constant
thickness plates (CTDs) require radial bending moments distributed at the contour. For
instance, in practical applications, alternative configurations can be obtained by use of an
outer built-in ring with two concentric and opposite axial ring forces (Figure 1). However,
this CTD class is more difficult to generate than the variable thicknesses shown next.

Figure 1. Design of Variable Curvature Mirrors derived from the CTD class. (Up): The basic solution
requires a uniform bending moment applied along the perimeter. (Down): Axial ring-forces on a vase
form providing equivalent bending moments.

2.2. Plates of Variable Thickness Distribution—VTD—Cycloid-like Form—Tulip-like Forms

One summarizes here results obtained by Lemaitre [1,4] from the thin plate theory,
that led to variable thickness distributions (VTDs) for the active optics mirrors, i.e. VCMs.

Starting from the definitions of radial and tangential bending moments, Mr and
Mt respectively, and denoting Qr the shearing force, these variables provides the static
equilibrium of a plate element. After substitution, the resulting equation is

D
d
dr

(
2z
)
+

(
d2z
dr2 +

ν

r
dz
dr

)
dD
dr

= −Qr (5)
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where the rigidity express D(r) = Et(r)3/[12(1 − ν2)] and laplacian ∇2 = 4A20 from
Equation (1). The shearing force Qr depends on each cases hereafter. Three VTDs associated
to external loads are able to generate, actively, the curvature mode Cv-1. Each of them
requires a particular shearing force.

• VTD Type 1—Uniform loading and reaction at edge:

A uniform load q is applied all over the surface of the substrate in the reaction at the
edge r = a. At a current radius r of the substrate, the shearing force Qr is defined by the
equilibrium πr2q + 2πrQr = 0 of the inner element to r, that is

Qr = −
1
2

qr , (6)

and after substitution, we obtain the rigidity

D = − qR
4(1 + ν)

(
constant− r2

)
. (7)

The interest of VTDs is to avoid the use of moments at the boundaries. We can select a
null bending moment at the edge, Mr(a) = 0. This is satisfied if the rigidity at the edge is
D(a) = 0. Therefore, the rigidity is

D = − qa2R
4(1 + ν)

(
1− r2

a2

)
, (8)

and then the thickness distribution is

t = −
[

3(1− ν)
qR
Ea

(
1− r2

a2

)]1/3

a . (9)

Due to the smoothly decreasing profile for low values of r, and of a vertical tangents
at the substrate edge r = a, we call this thickness distribution a cycloid-like form.

CONCLUSION—Cycloid-like form class or VTD Type 1:
Variable curvature mirrors are obtained by the uniform loading, q, and the reaction force at the

edge that provides a cycloid-like thickness of t = T20t0such as

T20 =

(
1− r2

a2

)1/3

with
t0

a
= −

[
3(1− ν)

qR
Ea

]1/3
, (10)

where 1/R = 2A20 is the curvature of the deformation, and the product qR is negative (Figure 2
Up-Left).

• VTD Type 2—Axial force at center and reaction at edge:

The substrate is deflected by an axial force F applied to its center that gives rise to a
uniform reaction F at the edge. If we consider an equivalent uniform load, q, applied to
its entire surface, we can define the central force by F = πa2q, then the associated shearing
force Qr satisfies πa2q + 2πr Qr = 0. Similarly, as in the previous configuration, we select a
null bending moment at the edge by selecting D(a) = 0. From integration, constant = ln a.
The rigidity is

D = − qa2R
4(1 + ν)

(
− ln

r2

a2

)
. (11)

Due to an infinite thickness at r = 0 and vertical tangents at the substrate edge, we call
this thickness distribution a tulip-like form.

CONCLUSION—Tulip-like form class or VTD Type 2:
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Variable curvature mirrors are obtained by an axial force, F, at the center and the reaction at
the edge provides a tulip-like thickness, t = T20, t0 such as

T20 =

(
− ln

r2

a2

)1/3

with
t0

a
= −

[
3(1− ν)

FR
πEa3

]1/3
, (12)

where 1/R = 2A20 is the curvature of the deformation, and the product FR is negative (Figure 2
Up-Right).

• VTD Type 3—Uniform loading and reaction at center:

The substrate is deflected by a uniform load, q, and in the reaction at its center by a
force F = πa2q. The associated shearing force at the current radius, r, is defined by the static
equilibrium F + πr2q + 2πrQr = 0. Similar to previous configurations, we selected a null
bending moment at the edge by taking Dr(a) = 0. From integration, constant = (ln a2 − 1)/2,
and the rigidity is

D =
qa2R

4(1 + ν)

(
r2

a2 − ln
r2

a2 − 1
)

(13)

Due to an infinite thickness at r = 0 and vertical tangents at the substrate edge, this
thickness distribution is also a tulip-like form.

CONCLUSION—Tulip-like form class or VTD Type 3:
Variable curvature mirrors are obtained by uniform loading, and the reaction at the center

provided a tulip-like thickness, t = T20, t0 such as

T20 =

(
r2

a2 − ln
r2

a2 − 1
)1/3

with
t0

a
=

[
3(1− ν)

FR
πEa3

]1/3
, (14)

where 1/R = 2A20 is the curvature of the deformation, and the product qR is positive (Figure 2 Down).
Whatever one of three VTD configurations, the maximum stresses at mirror surfaces

are derived from the substitution of the rigidity and from the definition of Mr and Mt. They
are the followings

σrr = ±
6Mr

t2 = ±3
2

a2

t2
0

qT20 = ±
[

3

8(1− ν)2
a2

R2 qE2

]1/3

T20 , σtt = ±
6Mt

t2 ≡ σrr , (15)

showing that the radial and tangential stresses are identical, whatever r is, as for a
CTD class.

For the cycloid-like VCM (i.e., Type 1) the central thickness is T20|max = T20(0) = 1, and
the stresses are maximal at center.

For tulip-like VCMs (i.e., Type 2 and 3), because of the central force applied punctually
at the center, the dimensionless thickness T20(0) → ∞ is in the form (ln ρ2)1/3 around
the center. For practical applications, it is always possible to limit the central thickness
to a finite value. A truncation of the stem can be designed in such a way as to respect
Rayleigh’s quarter-wave criterion (λ/4) of the stressed optical surface; then the axial force
is not applied punctually but onto a small area, say, typically a stem radius of a/50.
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Figure 2. Variable Curvature Mirrors derived from the VTD class. Dimensionless thicknesses T20

with ρ = r/a, ρ ∈ [0, 1] are as follows (Lemaitre [4]). (Up-left) Uniform loading and reaction at the
edge, T20 = (1 − ρ2)1/3; (Up-right) Axial force at the center and edge reaction, T20 = (−ln ρ2)1/3;
(Down) Uniform loading and the central reaction, T20 = (ρ2 − ln ρ2 − 1)1/3.

3. Optical Focal-Ratio—Buckling Instability—VCM Zoom Range—Metal Choice

• Optical f -ratio: Whatever one of three VTD classes, we can determine an optical f -ratio
generated by the Cv-1 deformation mode of a VCM. Assuming a flat mirror when in an
unstressed state, let us define this f -ratio as Ω. Considering an aperture diameter 2a,

Ω = |f /2a| = |R/4a| = |1/(8 a A20)|. (16)

After substitution, all three VTDs can be expressed by

t
a
=
[
12(1− ν)Ω

q
E

]1/3
T20 (17)

For these distributions, the radial and tangential stresses are identical, σrr = σtt. In
practical applications, these stresses must be evidently lower than the maximum tensile
stress σT-max (here assumed > 0) of the mirror substrate. Therefore, maximal stress values,
σrr or σtt, must satisfy [

3

128(1− ν)2Ω2
qE2

]1/3

|T20|max < σult (18)

• Buckling instability: A self-buckling instability may happen during a curvature change.
This is similarly to the meniscus shell “jumping toy”, in polymer material, which
is manually brought, temporarily, to the opposite curvature. Avoiding buckling
instability requires taking into account the radial tension, Nr, existing at the middle
surface and showing that the maximum compression value of Nr remains small
compared to a critical value.

The self-buckling instability is avoided by restricting curvatures to always having the
same sign during zooming. Furthermore, all three VTDs are decreasing to zero towards the
edge, and then prevents this instability.

• VCM zoom range: In order to avoid self-buckling instability, it is useful to consider
a basic alternative where a VCM is polished flat when unstressed, and define a zoom
range where all curvatures 1/Ri remain of the same algebraic sign when stressed.
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The curvature sign of the 1/Ri variation shall remain the same in all zoom ranges to avoid
self-buckling instability.

From various cycloid-like VCM experiments in quenched stainless steel alloy Fe67Cr13,
with aspect ratios of 2a/t(0) = 50 and zoom ranges varying from f /∞ to f /3, it has been
shown, from early prototype experiments at the Marseille Observatory, that the middle-
surface curvature is small and so does not entail any self-buckling effect.

• Metal choice: We selected VCM substrates in a quenched chromium stainless steel alloy
Fe67Cr13, with post-quenched ageing that shows a large elastic deformability, much
superior to that of fused silica or glass-ceramics. Deformability is characterized by the
ratio of maximum working stress over the Young’s modulus, i.e., the σM.W.S/E ratio.

Other stainless steel chromium alloys exist with a larger elastic deformability than the
quenched Fe67Cr13—as selected here. For instance, by including 1–2% molybdenum. Other
linear alloys are of interest for VCMs, such as titanium alloy Ti90Al6V4 or beryllium alloy
Be95Cu5, but are more brittle. However, for new experiment approaches, minimizing the
lathe-machining chip cutting size should be tested for lathe finishing.

4. Cycloid-like VCM Modeling and Finite Element Analysis

In Section 2, of small deflection theory, flexural results are valid only if flexural sags
zmax = a2/2R are small compared to the substrate mean-thickness <t>, i.e., when relationship
flexure vs. loading (zmax,q) is linear.

When sags zmax become non-negligible compared to <t>, radial and tangential stresses
at the plate middle-surface have to be considered with large deflections of plate’s theory
(Timoshenko & Woinosky-Krieger [16]). Investigations with this theory led us to non-linear
improved results [2,4]. However, this could not take into account convenient boundaries at
the VCM contour.

Vola carries out the present modeling with a finite element analysis (FEA) code. This
avoids previous inconveniences encountered with the large deflection theory below, and
provides a remarkable calculation accuracy. Modeling of a cycloid-like VCM is investigated
for the two following cases: (i) VTD plate alone and, (ii) VTD plate linked in a single
piece with an outer rigid ring via a very thin collarette. This uses MSC-Nastran code by
MSC-Software with the large displacement option (SOL 106) and takes into account well
defined boundaries.

4.1. VCM Modeling of a VTD Plate Alone under Uniform Load

Each finite element’s boundaries provide equilibrium by use of a complete local equa-
tion set. FEA analyses was carried out preliminarily with VCM thickness
t = t0 (1 − ρ2)1/3, 2a = 16 mm diameter, t0 = 300 µm central thickness, in a quenched
stainless steel chromium FeCr13 alloy of high ultimate strength with Young’s modulus
E = 205 GPa and Poisson’s ratio ν = 0.315. For uniform loads applied from q = 0 to q = 7 bars,
one shows that the deformation is non-linear (Figure 3). Nastran provides the flexure z(r)
(Figure 4) and shows the deviation ∆z(r) to a purely parabolic shape (Figure 5).

Boundaries’ conditions for the thickness distribution at edge, ρ = r/a = 1, were defined
by setting t(ρ = 1)/t0 = 0.5. Other Nastran conditions at contour are no ending moment
and being free to move radially. The origin of displacement is the mirror center. Quarter
sections of VCM axial displacements are shown before and after applying an averaged
intensity load of q = 5.3 bars (Figure 6).
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Figure 3. Load vs. flexure non-linearity for cycloid-like VCM with t = t0 (1 − ρ2)1/3.

Figure 4. Flexure vs. current radius for cycloid-like VCM with t = t0 (1 − ρ2)1/3.

Figure 5. Flexural deviation to paraboloid with respect to load intensity with t = t0 (1 − ρ2)1/3.
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Figure 6. Axial displacements for medium intensity load of q = 5.3 bars with t = t0 (1 − ρ2)1/3.

Instead of thickness t = t0 (1 − ρ2)1/3, and after several attempts, an interesting
thickness distribution (with t0 = 300 µm) may take the form t = t0 [1 − βρ2 − (1 − β)ρ4]1/3

(Figure 6). Another feature for the VLTI VCMs is that if they are not used all over the full
diameter 2a = 16-mm, then Vola proceeds to new optimizations by the least-mean square
for apertures of 16 and 14-mm, respectively (Figures 7 and 8).

Figure 7. Optimized thickness distribution t = t0 [1 − βρ2 − (1 − β)ρ4]1/3 over entire radius.

Figure 8. Deviations for optimized thickness t = t0 (1 − 0.69ρ2 − 0.31ρ4)1/3 over radius r = 7 mm.
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For a single plate without an outer collarette, the optimal result is t = t0 (1 − 0.69ρ2 −
0.31ρ4)1/3, with a central thickness of t0 = 300 µm, and a mean uniform load of q = 5.3 bars.

Due to a vertical tangent at the VCM’s edge, the outer shape can be modified without
altering the accuracy of the Nastran calculations. For all previous meshing models, the
outer part of the VCM is set to a conical shape for 0.9 < ρ < 1, with ρ = r/r0 and r0 = 8 mm.
The outer conical meshing model entailed a negligible effect compared to the theoretical
profile. The obtained distribution shows an over-thickness that is, at maximum, near
ρ = 0.85 (Figure 9).

Figure 9. Comparison between analytic and modeling of single plate cycloid-like distributions.

Compared to the small deformation theory, the optimized thickness obtained with the
Nastran FEA of a single plate model alone is 18% thicker, near ρ = 0.85.

One considers hereafter the geometrical elements, taking into account link-conditions
of a single plate linked through a thin collarette with a rigid outer ring.

4.2. VCM Modeling Linked to an Outer Cylinder Collarette and Rigid Ring

For practicable reasons of construction of cycloid-like form VCMs, the mechanical design
is completed with a radially very thin cylinder collarette linked on one side to the single
plate edge and at the other side to a rigid outer ring. This assembly—plate-collarette-ring—
is holostérique, i.e., is a one-piece construction.

Nastran modeling is able to accurately perform flexural optimizations of zones which
have very different thicknesses. The two boundary conditions at the base of an outer rigid
ring are as follows: the base of the ring is free to move radially, and tangential rotation is
unmovable. The narrow collarette was set up as at least three-layer meshing (Figure 10).

Compared to the results shown above, with the plate alone, previous results have
significantly changed. Surprisingly, optimizations with Nastran show that for radial
thicknesses, collarettes of 25 and 35 µm, respectively, one recovers optimal deviations of
the theory of a small deformation (Figures 11 and 12).

These results show that, with a 35-µm radial thickness collarette, the best optimization
is coincidentally t = t0 (1− ρ2)1/3, i.e., a thickness which is also found from the elasticity theory
of thin plates (cf. Section 2.2) (Figure 13). One may note that, for a 13 mm clear aperture
VCM and a load-range in [0, 6-bars], deviations are all included into one He-Ne wavelength
(633-nm) PtV maximum deviation.
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Figure 10. Mesh modeling with thin collarette. Axial displacement is 367 µm for optimized load
q = 5.3 bars.

Figure 11. Deviations for optimized thickness t = t0 (1 − 0.90ρ2 − 0.10ρ4)1/3 for r < 7 mm and
collarette 25 µm.

Figure 12. Deviations for optimized thickness t = t0 (1 − ρ2)1/3 over radius r = 7 mm and collarette
35 µm.
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Figure 13. Thickness t = t0 (1 − ρ2)1/3 with 35-µm radial thickness collarette of cycloid-like VCM.

Results of the final model thickness distribution, TNastran, are identical to that from the
thin plate theory except near the edge (Table 1). The VCM is a single-piece (i.e., holostérique)
where the mirror edge is linked to a rigid ring via a thin collarette 35-µm radial width. The
rigidity-ratio from the mirror edge over the collarette is (119/35)3 ∼= 40, thus providing a
high mirror-edge flexibility and convenient geometry (Figure 14).

Table 1. Cycloid-like VCM thickness. TNastran = t/t0 = (1 − ρ2)1/3 for 0 < ρ < 0.9; TNastran is a tangent
cone shape for ρ > 0.9; ρ = r/a, a = 8 mm, t0 = 300 µm.

Radius ρ (1 − ρ2)1/3 TNastran Comment

0.00 1.0000 1.0000

0.20 0.9864 0.9864

0.40 0.9435 0.9435

0.50 0.9085 0.9085

0.60 0.8618 0.8618

0.70 0.7989 0.7989

0.80 0.7114 0.7114

0.90 0.5749 0.5749 conical

0.95 0.4602 0.4861 conical

0.99 0.2710 0.4150 conical

1.00 0.0000 0.3973 conical

Figure 14. Schematic holostérique design of a cycloid-like VCM.
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Uniform loads are limited from 5 to 5.5-bars for VCMs of the ESO-VLTI delay lines
(see hereafter); we then have flexural deviations to paraboloids that are smaller than
half-wavelength PTV for loads q in a FEA range of [0, 6 bars].

5. Realizations and Results of Cycloid-like VCMs
5.1. Various Developments with VCMs

The first cycloid-like VCM (i.e., Type 1) was invented and developed by Lemaitre in
1974 [1] on the instigation of Connes & Michel [17] at the Laboratoire Aimé-Cotton, CNRS
Bellevue-Meudon, for a two-arm Fourier-Transform Infra-Red (FTIR) spectrometer. The
VCM thickness variation was made by an electro-erosion technique, over a 20-mm clear
aperture in a single piece of stainless steel. This VCM substrate was linked to a very
thin cylinder at the edge via a rigid ring. Installed as a field compensator—on a cat’s-eye
reflector of one of the two-arms—curvature variation was controlled by air pressure, while
the optical path was changed by translation. The VCMs allowed conjugation of the output
pupil and thus provided an optimal optical étendue—after P. Jacquinot—i.e., a luminosity
gain of about 100.

The next developments of cycloid-like VCMs required the use of a CNC lathe for
generating the profile thickness. One of them was built, around 1990, for the Large FTIR
spectrometer at LPMA, P. & M. Curie University, Paris-Jussieu. Further developments and
constructions of cycloid-like VCMs were performed for the recombination system of the
two-telescope-interferometer GI2T-CERGA, and the ESO VLTI array composed of four 8-m
unit telescopes (UT) and four 1.8-m auxiliary telescopes (AT) (Figures 15 and 16).

Figure 15. Views of the VLT array arrangement of ATs and UTs (courtesy ESO).
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Figure 16. (Left): VLTI delay line tunnel. (Right): Cat’s eye carriage on delay line and its VCM
(courtesy ESO).

The ESO VLTI is the largest interferometer for angular high resolution in astronomy.
With fixed base lines of the four UTs and the variable positioning of the x–y base lines of the
four ATs, the recombination tunnel allows the translation of the eight delay lines over 130-m
length. Present beam-combiner instruments, dedicated to various near and mid-infrared
bands, are PIONIER (H-band), GRAVITY (K-band) and MATISSE (L- and N-band).

Eight cat’s-eye systems are movable parts of the eight delay-line recombination tunnel
of UTs and ATs. These cat’s-eyes are retroreflective three-mirror systems by F. Dérie [13],
composed of a two-mirror Ritchey–Chrétien and a VCM as third mirror. Each of the height
VCMs reimages a focus of the VLTI array primary mirrors.

Eight VCMs are also dedicated to pupil conjugation of the ATs to delay lines because
(i) each AT can change location in the ESO concept of a movable x–y positioning baseline
and, (ii) each AT imaging observation is made for the object to be studied and another
object as a reference star. This requires a VCM-pair installed at each AT output to recombine
the pupil at the input of each delay line. The maximum baseline size is 130-m, allowing few
milli-arcsec resolutions. A change in the x–y configuration is incremental and then implies
a discrete curvature setting of each VCM-pair.

After some prototyping experiments at Marseille Observatory, and later at LAM, in
the period 1990–1998. Twenty cycloid-like VCMs were realized in our institute for the VLTI
from 1998 to 2018, including four spares. Ten new spare VCMs are under construction in
2019–2024 at LAM, as an ESO-AMU approved contract, for which the present modeling
should provide diffraction-limited extended-FOVs.

5.2. VCM Material and Construction Process

The material for VCM lathe machining is a long round bar in martensitic stainless
chromium steel Fe87Cr13, quenched at 950 ◦C and post-quench aged between 350 and 400 ◦C.
This alloy is made by the Ugitech Company, Ugine, France, designed as X30C13 and Ugitech
grade UGINA 4028W [18]. This alloy is mainly used for aircraft construction because of its
fine grain texture and high mechanical properties. Other equivalent names of this alloy
are Z30C13 in the European standard or AISI420 in the American standard, without any
specification of the quenching treatment.

After CNC lathe machining and polishing, the VCM substrates are flat or quasi-flat at
rest, and become actively convex up to 5.3-bars of air-pressure, typically for the full VLTI
zoom range. However, few of them have a VLTI zoom range of up to 6-bars.

Summarizing the theoretical results of the cycloid-like VCM opto-elasticity design
from Nastran:
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Poisson ratio ν = 0.315 Young modulus E = 205 GPa
Central thickness t0 = 300 µm Collarette radial thick. ∆r = 30 µm
Optimized load q = 5.3 daN·cm−2 Collarette stress σmax = 1100 MPa
Optimized flex.-sag z0 = 298 µm Radius of Curvature R = 107.4 mm
Outer diameter 2a = 16 mm Zoom f -ratio f /∞–f /3.35
Clear aperture dOpt = 13 mm Zoom f -ratio f /∞–f /4.14
Maximum load q = 6.0 daN·cm−2 Max. zoom range for dOpt f /∞–f /3.57

Each cat’s-eye VCM mount is a light weighted assembly (Figure 17). The curvature
control maintains the cophasing of the field-of-view whilst the delay line translation
maintains the cophasing of the optical path. The VCM assembly is supported by three
piezoelectric device ensuring angular remote-control correction errors during translation
along delay lines. Developed by Mazzanti at the instigation of Dérie, the air pressure
actuation system is an air box installed near the translation carriage of the VCM’s cat’s-
eye system. Air capacity is remotely filled up each day at the zeroing position. During
observations, remote control pressure, with respect to the assigned translation positioning,
used electronic valves.

Figure 17. (Up): Schematic sectional drawing of a cycloid-like VCM assembly. (Down): View of a
VCM assembly mounted in air pipe loading unit for installation at the VLTI translation carriage of
recombination tunnel.

Many stages are necessary to obtain a polished, fully operating VCM. These operations
also require equipment, as follows:

(i) An air-pressure generator system, two accurate gauges, a safety valve, and control
software. (ii) A He-Ne Fizeau interferometer. (iii) A wheel of various power positive
lenses, used as collimator lenses, for optical null-test with caliber radius of curvature
R2800, R420, R230, R140 and R105-mm. (iv) Cast-iron tool-pairs of 0, 2, 4, 6, 8, 10, 12-µm
sags over a 13-mm aperture diameter for surfacing the VCM shape. (v) A special loading
device for the plasticity reshaping of convexity that reverses air pressure applied to VCM
substrate—usable up to a 8-bars maximum load if needed.

Summarizing the main stages of the construction process for VCMs of VLTI:
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1. Multi-function CNC machining with Hardinge lathe and polycrystalline cubic boron
nitride (CBN) cutting tools [19]. A constant axial over-thickness is added for the
machining, tCNC = 15 + t0 = 315-µm (Figure 18), giving room for the next grinding
and polishing. The outer collarette radial thickness is machined slightly thicker, at
∆r = 50-µm. CNC positioning control accuracy is better than 1-µm (sub-contracted
by Gauthier Precision SAS). However, the minimum chip thickness for a quenched
chromium steel is close to, say, 10-µm. There exists a minimum chip cut thickness,
below which no chip can be formed stably, as shown in Matsumura [20].

2. Front surface grinding, 3-µm diamond grain, with, preferably, a flat cast-iron tool—
or a concave tool with up to 10-µm sag—ensuring the minimum curvature matter
removal from the previous lathe surface. Fizeau checking at caliber R2800.

3. Rear face edge grinding, 3-µm diamond grain, with an appropriate conical form in cast
iron. The VCM, rear side up, rotating slowly, and the conical form rotating from slow
to increasing speed.

4. Outer edge collarette rectification of VCM mounted on lab lathe with a flexible clamp
rotating slowly—centering better than 0.2-µm accuracy. Machining at a 10◦ inclination,
with a small external grinding wheel in cubic boron nitride (CBN) at 18,000-rpm. The
collarette radial thickness becomes ∆r ∼= 30 to 35-µm.

5. Repeat stage 2 of front surface grinding. Use an optimal concave tool among 0,
2, 4, 6, 8, 10, 12-µm sags for minimum removal matter. Fringe Fizeau checking at
caliber R2800.

6. Pre-stressing at the maximal load between 5 and 5.5-bars to slightly overpass R105
Fizeau test. This generates a convexity of 9-µm sag, typically, over a 14-mm diameter
in the Fizeau test R2800. This convexity is due to the collarette high stress which
also generates an axial displacement of ~8-µm, typically, i.e. its axial elongation. Pre-
stressing provides elasticity linearization of the stress–strain relation at the collerette
level (see Section 5.3).

7. Repeat grinding of stage 5 of the front surface grinding. Use the optimal concave tool
for minimum removal matter. Fizeau checking at R2800. N.B.: If the VCM convexity
overpasses 17-µm sag, then one operates directly to stage 8 of the operation.

8. Inverse stressing if necessary. The curvature of caliber R2800, with respect to a plane
surface, corresponds to a sag of 8.7-µm. If the convexity is in the range sag 17-22-µm—
and since the collerette plastic effect is due to dominant stresses in the pre-stressing
operation between 5 and 5.5-bars—, then one requires a special loading device. This
device can generate an air pressure loading at the VCM’s opposite side, by successive
trials up to 8-bars as a maximum. After this operation, one makes the pre-stressing
again, as in stage 6, for reshaping. Repeat this operation up to obtaining a curvature
of 17-µm sag at R2800 Fizeau checking. A cycle inverse stressing and pre-stressing is
able to reduce convexity up to a 5-µm sag amount without removing material. If this
result is not achieved, the VCM’s substrate is discarded.

9. Polishing with a pitch tool rotating below, by Lanzoni. The VCM translates up the
tool. Alumina abrasive Al2O3, grain size 1-µm for 8–12 h, 0.3-µm for 8–12 h, and
0.05-µm for 1 h. Polishing pressure is 30-g.cm−2. The polishing cinematic parameters
generate either concavity or maintain a stable curvature. Then, starting from a VCM
convexity smaller than 17-µm sag, a slightly convex 6-µm sag shape is achieved at the
end of polishing. Fizeau checking at R2800.

10. He-Ne interferogram data acquisitioned by Lanzoni with the Fizeau test with calibers
from R2800 to R105.

11. Gold coating in the vacuum chamber for near-infrared and infrared by ESO.
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Figure 18. VCM substrate design layout for lathe machining. Dimensions [mm].

Although operation-1 above was conveniently realized, tentative of industrialization
for the rest up to operation-10 were found unsuccessful, and then were carried out at LAM.
The VCM substrates were executed with CNC lathe at the thicknesses t*(r), that includes a
constant over-thickness of r < 8-mm. The substrates were linked to the rigid outer ring via
a thin collarette at the edge in a one-piece design (Table 2) (Figure 18).

Table 2. Thickness t*(r) of a cycloid-like VCM before optical surfacing. For r < 8-mm, t* is lathe
machined with constant 15-µm extra-thickness. t/t0 = (1− r2/a2)1/3 for r < 7.2. Conical for 7.2 < r < 8.
Central thickness t0 = 300.

r (mm) 0 2 4 5 6 7 7.2 8- 8 8+ 12
t (µm) 300 293 272 254 228 185 172 120 6750 6000 6000
t* (µm) 315 308 287 269 243 200 187 135 6750 6000 6000

Photos of main operations for the VCM elaboration, such as the Fizeau optical test
interferometer, the inner edge retouch for improving geometry by the finishing grinding
conical tool, the collarette outer rectification with a boron nitride grinding wheel, and the
polishing system, are displayed by Figure 19.

Figure 19. (A) Fizeau interferometer; (B) Inner edge grinding; (C) Outer collar rectification; (D) VCM
under polishing.
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5.3. Pre-Stressing and Maximum Stresses

The stainless steel chromium alloy, Fe87Cr13, i.e., X30C13 or AISI420, shows a high
ultimate stress when quenched at 750 ◦C and followed by tempered heating between 250
and 400 ◦C (effect known as post-quench ageing of the martensitic transformation). This alloy
allows the linearization of the stress–strain relationship (Hooke’s low). Ultimate stress σUlt
is near 1700-MPa, typically. Yield stress of 2% elongation σY.S is near 1500-MPa, as given by
Aubert & Duval [21], which linearly corresponds to the Rockwell hardness HRC = 45.

All VCMs are machined into substrates from a quenched round bar post-quench ageing.
Then substrates are pre-stressed at σP.S below 1400-MPa and, during zoom range, the
maximum working stress σM.W.S must remain below 1245-MPa, corresponding to 6-bars of
air pressure, R = 92.8-mm and f /2.90 at 2a = 16-mm diameter (Figure 20 Left). Hysteresis
appears whatever the zoom range domain (Figure 20 Right). The amplitude of this effect
was determined and modeled at the lab as a function of each maximum load in a cycle (cf.
Section 5.6 hereafter).

Figure 20. Diagrams showing (Right) an elasticity-loading path for stress–strain linearization and
(Left) a hysteresis loading-cycle.

For a cycloid-like VCM of the above final optimized design, and large loads up to
8-bars, ola obtains with Nastran: (i) sag vs. air pressure, and (ii) Von Mises stresses vs. air
pressure, thus for each collarette the radial thicknesses are ∆r = 35 and 25-µm, respectively
(Figures 21 and 22).

Figure 21. VCM sags vs. load pressure.
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Figure 22. VCM Von Mises stresses vs. load pressure and creeping effect due to pre-stressing
(dotted lines).

Nastran maximal Von Mises stresses are located at the collarette inner and outer
surfaces (Figure 22). Taking into account the pre-stressing operation applied to each VCM—
that performs Hooke’s law linearization while generating a creeping effect—a special
classical process for Nastran optimization is to model the creeping effect as follows (ola):

For a radial thickness collarette of 35-µm, and the hypothetic case of 8-bar pressure
(not often used in practice and that would lead to 1640-MPa Von Mises maximum stress),
the creeping effect—i.e., plasticification—is taken into account by introducing some zonal
change of Young’s modulus. For those areas one selects, E = 110 GPa, instead of E = 205 GPa,
and then obtains a maximum Nastran stress of 1320 MPa (instead of 1640 MPa) (Figure 23).

Figure 23. Final Von Mises stresses after plastification or creeping at q = 8-bar. Left-bar scale 1320 MPa.

5.4. Deformability Advantage of Present Alloy over Some Other Materials

From the maximum working strength of quenched chromium stainless steel, Fe87Cr13,
σM.W.S = 1245-MPa, and Young’s modulus E = 205 GPa, the metal cycloid-like VCMs show
the large elastic deformability. For instance, compared to Heraeus fused silica or glass Schott
Zerodur vitro-ceramic, the gain in the elastic deformability ratio—i.e., maximum working
stress over Young’s modulus σM.W.S/E—is widely in favor of the Fe87Cr13 alloy by a factor
close to 20 ([4] Table p. 272).

5.5. Interferometric Results

He-Ne interferograms are obtained from our LAM Fizeau interferometer after reduc-
tion by Lanzoni with Quick Fringes—a Canadian code [22]—for various curvatures of
VCM #20 over a 6-mm clear aperture diameter (Figure 24). ESO-AMU contracts for VCM
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optical quality is specified in a PTV wavefront-error diagram. The diagram shows the PTV
wavefront-error specifications and obtained results for five discrete curvatures, C = 1/R
over a 6-mm clear aperture for the VLTI, i.e., a 3” diffraction-limited FOV.

Figure 24. He-Ne interferograms of VCM #20 for increasing radius of curvatures up to caliber
R = 105-mm under air pressure 5175-millibar.

Two surface-plots show the optical quality of VCM #20 (Figure 25). The maximum
PTV error is smaller than the λ/4 He-Ne fringe all over the zoom range (Figure 26). In this
latter figure, the red point underlines the ESO specification to achieve a PTV error smaller
than the λ/4 He-Ne fringe for an end-polish VCM Fizeau-test with the caliber R2800. The
double line –blue and pink– from the experiment test displays an increasing and decreasing
pressure cycle.

Figure 25. Surface plot of VCM #20 at load 81-mbar for calibers R = 2800-mm (Left) and at load
5174-mbar for R = 105-mm (Right).

Figure 26. PTV wave-front-error (WFE) specifications (red) and obtained results of VCM#20 for
a cycle loading; (blue) increasing pressure, (pink) decreasing pressure. Wavelength λ is He-Ne
632.8-nm.
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5.6. Hysteresis Cycles and Hysteresis Modeling

Flexural hysteresis of the Fe87Cr13 metal displays a slight decrease of the load-value
when the VCM comes back to lower pressures for recovering a given previous curvature.
An example of a hysteresis loop is the path AIWJA (Figure 20 Right) where the extremal
point W is close to the maximum working stress.

For a loading sequence up to qSeq, and during de-loading back at load q, the same
curvature is obtained for a load slightly lower, q–∆q. These data were registered with the
Fizeau interferometer—at curvature radii R 2800, 420, 230, 140, 105, 86-mm—during several
cycles of load sequence, qSeq. The hysteresis effect may be represented analytically as an
odd series [4,23]

∆q = δ1 q + δ3 q3 + δ5 q5 with q < qSeq, (19)

where δi are coefficients.
The above law on flexural hysteresis states that:

1. During the de-loading, the same curvatures than when loading are obtained by lower
applied loads.

2. After the loading and subsequent de-loading sequence of about 12 h, the initial and
final curvatures are identical in a new cycle.

From experiment results, one builds a network of theoretical hysteresis curves for
various cycle sequences, qSeq, that allow modeling of the typical effects. Each cycle ∆q(q,
qSeq)—used for active optics corrections—corresponds to a de-loading time of about five
minutes, typically (Figure 27).

Figure 27. Hysteresis of a cycloid-like VCM for a de-loading time of about five minutes, typically.
Deviations ∆q(q, qSeq) vs. loadings q are odd functions. For a sequence qSeq = 5, the maximum
hysteresis amplitude ∆q/qSeq reaches 1.4%.

Results from stressing cycles of various VCMs up to an air pressure of 7-daN·cm−2—
i.e., at 7-bar—allowed us to elaborate the above hysteresis model. For VCMs contractually
accepted by ESO, each report includes, especially, data of the pressure vs. the curvature
cycle. For instance, VCM #20 was stressed up to q = 5.17-bar at a maximum curvature
of (1/105)-mm−1 which provided a null deviation wave at the caliber radius R105 in the
Fizeau interferometer. Experiment results of our ESO report, by Lanzoni, include the
pressure vs. the curvature and the deduced hysteresis cycle of VCM #20 (Figure 28).

At the Paranal VLTI array site, the curvature control model is completed with the above
hysteresis compensation model ( Mazzanti). The final VCM curvature closed-loop system acts at
the same level as that of the positioning control of the cat’s-eye translation and tilt.
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Figure 28. Experiment results pressure–curvature and deduced hysteresis cycle of VCM #20. (Left):
Maximum load pressure cycle up to q = 5.17-bar which corresponds to caliber R105. Uploading in
blue and downloading in pink (Right): Hysteresis after some minutes de-loading is ∆q/q = 1.47% for
the sequence qSeq = 5.17-bar.

6. Conclusions

This paper investigates accurate modeling for the elasticity design of cycloid-like VCMs
in active optics methods. FEA optimizations allowed us to improve the preliminarily design
elaborated from analytic small deflection theory. FEA shows that the diffraction criterion
can be achieved for a large zoom range compensation over an angular VLTI field-of-view
larger than required. Beam recombination of the VLTI array is efficiently achieved by both
the curvature-control and hysteresis modeling-control of the in situ VCMs.

However, it is pure coincidence that Nastran thickness modeling with the collarette
leads us to an identical thickness to that of small deflection theory without any collarette,
i.e., t = t0 (1 − ρ2)1/3.

Regarding mechanics’ and optics’ fabrication, this includes mainly: NC lathe micro-
cutting with a minimum chip thickness, optical surface grinding, inner edge grinding, outer
collarette rectification, pre-stressing for elastic linearization, final grinding and polishing.
Besides all current interferometric tests, this technology process shows some complexity.

Since the first cycloid-like VCMs built as prototypes at the Marseille Observatory in
1975, ensuing developments at LAM, since 1998 for the ESO Paranal VLT Interferometer
Array, provided diffraction-limited mandatory specifications of 3” FOV for a 6-mm clear
aperture. With our ESO-AMU approved convention of making 10 VCM spares up to
2024, the performance can be improved from the results of present modeling by providing
diffraction-limited extended-FOVs.
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