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Elasticity Theory of Thin Plates and Active

Optics. Solutions for Generating Toroid Surfaces

with Vase Forms

Gérard R. Lemaitre

Abstract. The elasticity theory of thin plates is applied to appropriate mirror thickness
distributions and external load configurations for generating optical aberration mode cor-
rections. From the analysis and an experiment, it has been shown that the formulation of
the net shearing force of this theory, as found in the classical literature, must be corrected as
presented in this paper. The new formulation was validated and applied to meniscus form
and vase form mirrors generating the correction of third-order astigmatism. Geometrical
designs based on vase form thickness distributions also allow obtaining diffraction-limited
deformations with a reduced set of four perimeter forces only. These active optics con-
figurations, which show two concentric zones of constant thickness, are useful solutions
to generate astigmatism corrections by a saddle-like flexure on flat or spherical surfaces –
with glass or metal substrates – providing hyperbolic-paraboloid or toroid shapes respec-
tively.

Keywords: elasticity theory, active optics, toroid surfaces, aspheric mirrors, optical ab-
errations.
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1. Introduction: elasticity and optics

Elasticity analyses and optical designs of mirrors for astronomy allow the optim-
ization of substrate geometry with appropriate boundary conditions for obtaining
an optical surface either by stress polishing or by in-situ stressing. For materials
having a linear stress-strain relationship, such as glass and some metal alloys, these
methods provide accurate optical deformation modes which fully satisfy diffraction-

limited criteria. The highly accurate and remarkably smooth surfaces obtained from
active optics methods allow to built new optical systems that use highly aspheric
and non-axisymmetric (sometime called freeform) surfaces. The elasticity theory
of thin plates is extremely useful for the research and optimization of obtaining as-
pheric surfaces with constant thickness distribution (CTD), this is mainly because
CTD is the only way for superposing many optical modes.
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Optimal elasticity configurations can be found by particular flexure of optical
modes such as the curvature mode Cv1, represented in cylindrical coordinates by
z = A20r

2, or the three 3rd-order aberration modes: spherical aberration, coma and
astigmatism – Sphe 3, Coma3, Astm3 – represented by z ∝ r4, r3 cos θ, r2 cos(2θ),
respectively, or some optical mode of the general form

zn,m = Anmrn cos(mθ), (1)

where n and m are integers such that m 6 n, n + m is even, and n + m > 2.
For n + m > 4, the aberration order of an optical mode is usually defined by
the value n + m − 1. The two first-order modes Tilt 1 and Cv 1 form the Gaussian
terms of optics, or the dioptrics modes. The set of all zn,m optical modes belongs
to a triangle matrix called the Seidel modes.

Applying a non-uniform load over all the surface of a plate is difficult, so for
practical reasons we restrict here to cases of circular plates where only an external
uniform load (q = const), or nothing (q = 0) are applied all over the clear op-
tical aperture of a circular mirror. Generating by flexure a non-axisymmetric mode
leads to applying force distributions along the mirror contour – modulated in mθ
azimuthal angle – in order to provide the requested shearing forces and bending
moments at the contour boundaries. Axisymmetric and non-axisymmetric flexural
modes of a circular plate where first derived by Poisson and Clebsch respectively.
These results are reduced to solve the bi-laplacian equation ∇2∇2z − q/D = 0,
where D is a constant (called rigidity) related to the plate thickness t by D ∝ t3.
The flexural modes which are solutions of this equation are called Clebsch modes.

Investigations carried out with variable thickness distribution (VTD) circular
plates [1] for obtaining Seidel modes generally lead to configurations which do not
allow the superposition of the modes, or coadding modes, except for Cv 1 and Astm 1
which both have the same cycloid-like VTD. In order to achieve a high degree of
aberration correction, the main goal of optics is to fully benefit from the coad-
dition capability of elastic modes, then to obtain aspheric optical mirrors which
could provide the best imaging quality. Compared to VTDs, the reason of coaddi-
tion capability leads us to investigate hereafter only the case of constant thickness
distributions (CTD).

Research of configurations where the flexural Clebsch modes have the same form
as optical Seidel modes is investigated for two configuration classes: single thickness

plates and double concentric zone plates, with one or two constant zonal thicknesses,
i.e., mirror plates belonging to CTDs. For mirrors having a moderate optical power,
these configurations are called meniscus forms and vase forms respectively.

2. Elasticity theory of thin plates with constant thickness distribu-
tions (CTDs)

Because of differences in the homogeneity of sign conventions found in books and lit-
erature on thin plate deformations, it seems useful to reformulate hereafter the clas-
sic theory of thin plates.

For further simplification in the notations, let’s denote the rigidity D of a plate
as related to its thickness t by

D =
Et3

12(1 − ν2)
, (2)
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where the Young’s modulus E and Poisson’s ratio ν are constants depending on
the material.

In the case of plates with a variable thickness distribution (VTD) the rigidity D
is not a constant. Theoretical investigations of axisymmetric thickness plates – i.e.,
rigidity of the form D(r) – lead to obtain flexural modes satisfying the Seidel modes
with very simple boundary conditions [1], [2]. Nevertheless, due to the extreme
difficulty to realize the superposition of these flexural mode, we restrict to the case
of constant thickness distributions (CTD), i.e., D is a constant.

Considering CTD plates and a cylindrical coordinate system, the radial and
tangential bending moments and the twisting moment, per unit length, can be
defined by

Mr = D

[

∂2z

∂r2
+ ν

(

1

r

∂z

∂r
+

1

r2

∂2z

∂θ2

)]

, (31)

Mt = D

[

1

r

∂z

∂r
+

1

r2

∂2z

∂θ2
+ ν

∂2z

∂r2

]

, (32)

Mrt = Mtr = (1 − ν)D

[

1

r2

∂z

∂θ
−

1

r

∂2z

∂r ∂θ

]

, (33)

where a positive flexure entails a positive radial bending moment Mr applied at

r = a for generating the fundamental Cv 1 mode z20 = A20r
2 (curvature mode).

For znm modes with m = n, we may also verify that Mr is positive in the x, z section,
y = θ = 0. This sign convention is natural and in agreement with the generally used
optics convention a curved surface z20 is of positive curvature if ∀ r, z20(r) > z20(0).

Since the Laplacian is

∇2z =
∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2

∂2z

∂θ2
, (4)

the bending moments satisfy

Mr + Mt = (1 + ν)D(r, θ)∇2z. (5)

The determination of radial and tangential shearing forces, Qr and Qt respect-
ively, as functions of the flexural moments, is derived from the equilibrium of a seg-
ment element r dθ dr around the tangential axis Oτ ′ parallel to ωτ and around
the radial axis Oω respectively (Fig. 1).

For the radial shearing force Qr the resulting components around Oτ ′ are

Qr r dθ dr +
∂

∂r
(rMr) dθ dr − Mt dθ dr −

∂Mrt

∂θ
dθ dr = 0,

where the third term is the sum of two components tilted of ± dθ/2 from the radial
axis Oω. After simplification and use of equations (3), the radial shearing force is
represented by

Qr = −
∂Mr

∂r
−

1

r

(

Mr − Mt −
∂Mrt

∂θ

)

= −D
∂

∂r
(∇2z). (6)

The tangential shearing force Qt is derived from the moments around Oω. The
resulting components are

Qt r dθ dr +
∂Mt

∂θ
dθ dr − Mrt dθ dr −

∂

∂r
(rMrt) dθ dr = 0,
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Fig. 1. Bending moments, twisting moment and shearing force providing the equilibrium
of plate element r dθ dr

and after simplification and use of equations (3) the tangential shearing force is

Qt = −
1

r

(

∂Mt

∂θ
− 2 Mrt

)

+
∂Mrt

∂r
= −D

1

r

∂

∂θ
(∇2z). (7)

The net shearing force Vr , first derived by Kirchhoff [3], [4], takes into account
the variation of the twisting moment Mrt. Accordingly to the sign convention for
the three flexural moments, the net shearing force [5] is 1

Vr = Qr −
1

r

∂Mrt

∂θ
. (8)

The force Vr, which represents the axial resultant acting at a plate radius r, is
useful to define a boundary condition (known as Kirchhoff’s condition) at the edge:

1The present positive sign convention for the bending moments Mr and Mt – cf. in detail below
equations (3) – provides a logical representation of the flexure. It was used independently by
Lubliner and Nelson [6] without comments. However, a negative sign convention has been used by
other authors. As shown here in Fig. 1, the variation of the bending moment Mr along the radial
direction entails that a positive curvature mode z20 is generated by a positive bending moment
Mr for increasing values of radius r.

There is an error in Theory of Plates and Shells by Timoshenko and Woinowsky-Krieger [7,
at Eq. (j), p. 284]: their convention uses a negative sign in the definition of the three moments
Mr , Mt and Mrt, while the sign of their shearing forces Qr and Qt with respect to the Laplacian
term is as in above equations (6) and (7). Hence the correctly associated representation of the net
shearing force should be Vr = Qr + ∂Mrt/(r ∂r), with their notation.

Several other authors use negative sign convention from [7] or the present positive sign convention
in defining the two bending moments, but the torsion moment Mrt appears with an opposite sign
whatever convention used. In order to respect the equilibrium equations of statics, the sign before
Mrt is also changed in those equations, so the Poisson biharmonic equation is satisfied. However,
there is an error in the sign before ∂Mrt/(r ∂r). A similar error in the definition of Vr seems also
to appear in the article by E. Reissner [8].
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Fig. 2. External uniform load q applied to a plate element and shearing forces providing
the equilibrium of a plate element in z-direction

if a plate has a free edge, then Vr = 0 at its contour. Since D is a constant, after
substitution of Qr and Mrt, we obtain

Vr = −D
∂

∂r
(∇2z) + (1 − ν)D

1

r

∂

∂r

(

1

r

∂2z

∂θ2

)

. (9)

The external uniform load q , applied per unit area onto the surface of the ele-
mentary segment, is in static equilibrium with the shearing forces (Fig. 2). After
dividing the terms of the equilibrium equation by element area r dθ dr we have

1

r

[

∂

∂r
(rQr) +

∂Qt

∂θ

]

+ q = 0. (10)

This partial derivative equation linking the shearing forces to a uniform load q is
a general relation applying either to variable thickness plates (VTD) or constant
thickness plates (CTD). Restricting to the case of constant thickness plates for
reasons of coaddition mode capability (see Section 1), i.e., D is a constant, we
obtain from equations (6) and (7)

∇2∇2z(r, θ) −
q

D
= 0, D =

Et3

12(1 − ν2)
= const, (11)

which is the fundamental biharmonic equation of thin plate theory of circular
plate [7], [8], also called Poisson’s equation of elasticity.

Case 1. Null uniform load: q = 0. The general solutions of equation (11) are of
the form

Z = Rn0 +

∞
∑

m=1

Rnm cos(mθ) +

∞
∑

m=1

R′

nm sin(mθ), (12)

where Rn0, Rn1, . . . , R
′

n1, . . . are function of the radial distance only. For simpli-
fication, we restrict this study to deformation terms with cosine azimuth only, as
proposed by equation (1), for obtaining optical modes zn,m (also denoted znm).
Then we consider hereafter only terms where R′

nm vanish:

R′

nm(r) = 0.
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Quantities Rnm(r) are solutions of

(

d2

dr2
+

1

r

d

dr
−

m2

r2

)(

d2Rnm

dr2
+

1

r

dRnm

dr
−

m2

r2
Rnm

)

= 0. (13)

For m = 0, m = 1 and m > 1, the functions Rnm of the general solutions (called
Clebsch’s polynomials [10]) have the following forms:

Rn0 = Bn0 + Cn0 ln r + Dn0r
2 + En0r

2 ln r, (141)

Rn1 = Bn1r + Cn1r
−1 + Dn1r

3 + En1r ln r, (142)

Rnm = Bnmrm + Cnmr−m + Dnmrm+2 + Enmr−m+2. (143)

Case 2. Uniform load: q = const. The general solution of the biharmonic equa-
tion (11) is unique and axisymmetric, i.e., Rnm = 0 for m 6= 0. It is then parented
to equation (141) but includes a fifth term in r4:

Rn0 =
q

64D
r4 + Bn0 + Cn0 ln r + Dn0r

2 + En0r
2 ln r. (144)

NB The logarithm terms in equations (141) and (144), Cn0 ln r and En0r
2 ln r, apply

to holed plates, whilst the En0r
2 ln r term alone relates to a concentrated load acting

at the center of the circular plate.

3. Solution families generating seidel optical modes

One usually characterizes the optical power of a mirror of curvature 1/R and clear
aperture d by its aperture-ratio f/d = R/(2d). For mirrors with relatively low
f -ratios, say, f/5 (i.e., f/d = 5), f/4, up to f/3, the sag due to its curvature is
relatively low, so the stresses induced in the middle surface of the meniscus plate
remain very low and do not require using the theory of shallow spherical shells [1].
Assuming that this condition is fulfilled, the thin plate theory is applied to either
CTD plane mirrors or CTD meniscus mirrors.

We research configurations able to generate flexure of a CTD circular plate
identical to the shape of a wavefront optical mode, also called Seidel mode. These
modes belong to a circular polynomial series. Each mode is represented by

z ≡ znm = Anmrn cos(mθ), m 6 n, m + n > 2, (15)

where m + n is even, n and m are integers. Given the condition m 6 n, the series
development of such optics modes generates the terms of a triangular matrix. For
low-order modes we use the simple suffix denotation nm instead of n, m. With
m + n = 4, the three terms coming after the dioptrics are the primary aberration
modes z40, z31 and z22, i.e., spherical aberration, coma and astigmatism respectively,
also denoted Sphe 3, Coma3 and Astm 3.
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The following derivative elements:

∂2z

∂r2
= n(n − 1)Anmrn−2 cos(mθ), (161)

1

r

∂z

∂r
+

1

r2

∂2z

∂θ2
= (n − m2)Anmrn−2 cos(mθ), (162)

∇2z = [n(n − 1) + (n − m2)]Anmrn−2 cos(mθ), (163)

allow determining of the bilaplacian ∇2∇2z. After substitution in (11), we obtain

Anm (n2 − m2)[(n − 2)2 − m2]rn−4 cos(mθ) −
q

D
= 0, n > 2. (17)

The Clebsch solutions – combinations of n and m for which the equation can be
solved for practicable applications (i.e., uniform load q = 0 or q = const) – are

Case 1 : q = 0 −→ m = n, i.e., z22, z33, z44, . . . terms,

−→ m = n − 2, i.e., z20, z31, z42, . . . terms,

Case 2 : q = const −→ n = 4, m = 0, i.e., the z40 term.

(18)

These solutions belong to a subclass of Seidel modes to be called Clebsch–Seidel

modes.
Except for z40 mode, the other modes belong to the two lower diagonals of

the optics triangular matrix (Fig. 3). The generation of z20 ≡ Cv 1, z40 ≡ Sphe 3,

Fig. 3. Triangular matrix of optical Seidel modes. Except for spherical aberration mode
Sphe 3, the subclass of Clebsch–Seidel modes (shown in boxes) is represented by the diag-
onal lines m = n and m = n − 2

z31 ≡ Coma3, z22 ≡ Astm3, z42 ≡ Astm 5, z33 ≡ Tri 5, z53 ≡ Tri 7, z44 ≡

Squa 7, . . . modes is obtained, while it is found not possible to generate the two other
5th-order modes z51 ≡ Coma5 or z60 ≡ Sphe 5 by only using q = 0 or q = const.
Generating z51 would require a prismatic loading; generating z60, a parabolic loading.
Due to extreme difficulties to achieve them in practice, such non-uniform loading
distributions are not considered hereafter.
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4. Meniscus form mirrors generating Clebsch–Seidel modes

The bending and twisting moments, as derived from equations (3), are

Mr = D[n(n − 1) + ν(n − m2)]Anmrn−2 cos(mθ), (191)

Mt = D[n − m2 + νn(n − 1)]Anmrn−2 cos(mθ), (192)

Mrt = D[m(n − 1)(1 − ν)]Anmrn−2 sin(mθ). (193)

By (6) and (9), the radial shearing force Qr and the net shearing force Vr are

Qr = −D[(n − 2)(n2 − m2)]Anmrn−3 cos(mθ), (20)

Vr = −D[(n − 2)(n2 − m2) + (1 − ν)(n − 1)m2]Anmrn−3 cos(mθ). (21)

For each of the first flexural modes, the bending moment Mr and shearing forces Qr

and Vr at the mirror perimeter r = a and at θ = 0 are following:

Mode n m Mr(a, 0) Qr(a, 0) Vr(a, 0)

Cv 1 2 0 2(1 + ν)DA20 0 0 (221)

Sphe 3⋆ 4 0 4(3 + ν)Da2A40 − 32DaA40 − 32DaA40 (222)

Coma3 3 1 2(3 + ν)DaA31 − 8DA31 − 2(5 − ν)DA31 (223)

Astm3 2 2 2(1 − ν)DA22 0 − 4(1 − ν)Da−1A22 (224)

Astm5 4 2 12Da2A42 − 24DaA42 − 12(3 − ν)DaA42 (225)

Tri 5 3 3 6(1 − ν)DaA33 0 − 18(1 − ν)DA33 (226)

⋆ for Sphe 3 mode, the uniform loading is q = 64DA40.

For generating a non-axisymmetric mode, the required boundary conditions at
the contour r = a are defined from the associated bending moment Mr(a, θ) and net
shearing force Vr(a, θ). This requires use of K radial arms clamped to the mirror
contour (Fig. 4).

The total number K of implemented radial arms depends on the type of mode
and on the number of modes to be superposed. The rigidity of the meniscus must
be optimized for an admissible stress level of the material. The intensity of axial
forces Fa,k and Fc,k to apply, at r = a and r = c (at the end of radial arms clamped
onto the edge), are derived from static equilibrium relationships

Fa,k + Fc,k = a

∫ π(2k−1)/K

π(2k−3)/K

Vr(a, θ) dθ, (231)

(c − a)Fc,k = a

∫ π(2k−1)/K

π(2k−3)/K

Mr(a, θ) dθ, (232)

k = 1, 2, . . . , K for a mirror having K radial arms.
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Fig. 4. Sign convention: meniscus form deformable mirror. By K we clamped arms are
angularly and uniformly distributed around the mirror. Axial forces Fa,k and Fc,k act
respectively at radii r = a and r = c at the ends of radial arm number k. These forces are
derived from Mr and Vr. For the single curvature mode z = A20r

2, if A20 is positive, then
the curvature is positive and the sign convention gives also Mr > 0

Coaddition of various modes is obtained by summing the corresponding forces.
The resulting forces to apply, Fa,k and Fc,k, are

Fa,k =
∑

n,m modes

Fa,k, Fc,k =
∑

n,m modes

Fc,k. (24)

The resulting mirror geometry with radial arms built-in along the contour and allow-
ing coaddition of various modes is called hereafter a multimode deformable mirror,
or MDM.

5. Meniscus form with special arm geometry for the astigmatism
mode

The 3rd-order astigmatism aberration, Astm3, is an off-axis aberration which ap-
pears on any optical beams reflected by a convex or concave spherical mirror when
the principal ray of the beam is not reflected perpendicularly to the mirror surface,
i.e., when this beam is deviated by the mirror.

Generating the Astm3 mode by active optics on a meniscus mirror requires use of
a minimum number of four radial arms, K = 4, angularly distributed at θ = 0, π/2, π
and 3π/2. This would generally entail applying a set of four forces Fa,k at the mirror
edge r = a and a set of four forces Fc,k at the outer ends of the arms r = c. However,
a special design with only four Fc,k forces can be obtained by ensuring the convenient
distributions of Mr(a, θ) and Vr(a, θ). Stating that Fa,k = 0, we obtain from k = 1
to k = 4, by equations (23),

∫ π(2k−1)/4

π(2k−3)/4

Vr(a, θ) dθ =
1

a − c

∫ π(2k−1)/4

π(2k−3)/4

Mr(a, θ) dθ. (25)

After substitution of Mr and Vr by their values in (224) the radial value c of the arm
end is

c =
a

2
. (26)
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Fig. 5. Configuration of a four-arm meniscus-form mirror generating Astm 3 mode. It
uses only two pairs of opposite forces Fc,1=−Fc,2=Fc,3=−Fc,4 acting at radius c = a/2 on
folded arm ends located in directions x and y. Since ∀Fa,k=0, we avoid using eight forces
and call it a degenerated configuration. The boundaries are realized via arches linked to
the mirror edge by two thin tangential stripes, separated by 22.5◦, providing a best azimuth
modulation in cos(2θ) for generating Mr and Vr

This very simple geometry reducing the number of forces from eight to four is called
degenerated configuration. The four arms must be folded towards the mirror center
(Fig. 5): a meniscus form of clear aperture 2a provides a pure 3rd-order astigmatic

flexure Astm3 by requiring only four alternatively opposite forces Fc,k applied to

the ends of folded arms at radial distance c = a/2.
The set of four forces Fc,k is by itself in equilibrium – or self-reacting. The force

intensities and directions are, by (231),

Fc,k = (−1)k4(1 − ν)DA22 = (−1)k Et3

3(1 + ν)
A22, k = 1, 2, 3, 4. (27)

NB One can show as a general result that Clebsch–Seidel modes with m = n,
such as Tri 5 mode A33r

3 cos(3θ), can benefit from these simple degenerated config-
urations where Fa,k = 0 [1].

6. Vase form and multimode deformable mirrors (MDMs)

6.1. Saint-Venant’s principle of equivalence and vase form

In order to generate very smooth optical surfaces by active optics, one has to avoid
or minimize the effects of local deformations at the regions where the forces are
applied. These local deformations are well known from analyses using the thick plate
theory [7] which takes into account the shear stresses and shows that the amplitude
of the flexure varies along the thickness of the plate and is a maximum where
the forces are applied.

With the meniscus plate used in the previous section for correcting astigmatism,
the proximity of the forces applied at the mirror contour entails to build a mirror
somewhat larger than that of its clear aperture. Another alternative to avoid these
local deformations at the mirror surface is to develop a vase form design. It is made
of two concentric zones, each of them of constant thickness, with the outer ring
thicker than the inner meniscus. The diameter of the meniscus corresponds to that
of the clear mirror aperture.
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Saint-Venant enounced a useful principle which introduced some flexibility for
practical applications of the boundary conditions 2. We recall that a set of forces
define a torsor which, at any given point, is globally represented by a resultant
force and a resultant moment. An excellent statement of Saint-Venant’s principle of
equivalence has been given by Germain and Muller [12] as follows: if one substitutes

a first distribution of given surface forces F, acting on a part δAB of a boundary

area, by a second one acting on the neighborhood and determining the same torsor ,
whilst the other boundary conditions on the complementary parts of AB relatively to

A remain unchanged , then in all regions of A sufficiently distant from AB the stress

and strain components are practically unchanged.

The application of Saint-Venant’s principle allows determining equivalent loading

configurations at the contour of a solid (Fig. 6).

Fig. 6. Saint-Venant’s principle of equivalence: example of two equivalent load config-
urations applied at the boundary of an axisymmetric vase form mirror. The optical clear
aperture is that of the junction zone. Configuration on right: local deformations at force
application zones will not affect the optical figure

6.2. Vase form and radial arms geometrical design

Let us consider a plane MDM with a clear aperture zone defined by 0 6 r < a,
a built-in ring zone defined by a < r 6 b, where t1, t2 and D1, D2 are the thicknesses
and associated rigidities of the inner and outer zones, respectively. The axial forces
applied to the ring inner radius, r = a, are denoted by Fa,k; those applied to
the arm outer-end, at r = c, by Fc,k. With a total number of K arms, each arm is
numbered by k ∈ [1, 2, . . . , K] and k = 1 ⇔ θ = 0. In addition, positive or negative
uniform loads q can be superposed into the vase inner zone by mean of air pressure
or depressure (Fig. 7).

• Inner and outer zone – Rigidity ratio. The constant rigidities of inner and outer
zones of the vase form can be denoted by D1 and D2, respectively, where

D1 =
Et31

12(1 − ν2)
, 0 6 r 6 a,

D2 =
Et32

12(1 − ν2)
, a 6 r 6 b.

(28)

2Saint-Venant first enounced the equivalence principle in Sur la Torsion des Prismes [11, p. 298–
299].
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88 GÉRARD R. LEMAITRE

Fig. 7. Elasticity design of a vase form MDM based on two concentric rigidities and
radial arms. The clear aperture zone is built-in at r = a into a thicker ring. This holosteric
design allows generating and coadding the Clebsch–Seidel deformation modes, Cv 1, Sphe3,
Coma 3, Astm3, etc., by axial forces Fa,k and Fc,k applied at the ring inner radius r = a
and outer end r = c of K arms

Let us introduce the rigidity ratio γ between the two zones as

γ =
D1

D2
=

t31
t32

, (29)

where γ < 1 for a vase form.

• Continuity conditions. The continuity conditions on z, ∂z/∂r, Mr and Vr at
the junction r = a, ∀ θ after simplifications are, respectively,

Anman = Rnm(a), (301)

Anmnan−1 =

[

dRnm

dr

]

r=a

, (302)

Anm

[

n(n − 1) + ν(n − m2)
]

an−2 =
1

γ

[

d2Rnm

dr2
+

ν

r

dRnm

dr
−

νm2

r2
Rnm

]

r=a

, (303)

Anm

[

(n − 2)(n2 − m2) + (1 − ν)(n − 1)m2
]

an−3

=
1

γ

[

d3Rnm

dr3
+

1

r

d2Rnm

dr2
−

1 + νm2

r2

dRnm

dr
+

(1 + ν)m2

r3
Rnm

]

r=a

. (304)

The above set allows to determine the constants Bnm, Cnm, Dnm and Enm in equa-
tions (14) as functions of Anm, and then the bending moment Mr(b, θ) and net
shearing force Vr(b, θ) distributions to apply at the ring outer edge r = b.

• First Clebsch–Seidel modes. For the first Clebsch–Seidel modes, the substitution
of each znm mode into equations (30) and solving of the associate system set lead
to the following relation sets:
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Curvature 1st-order mode – Cv 1 (n = 2, m = 0):

B20 = (1 − γ)(1 + ν)(1 − ln a2)
a2A20

2
,

C20 = (1 − γ)(1 + ν)a2A20,

D20 = [2 − (1 − γ)(1 + ν)]
A20

2
,

E20 = 0,

Mr(b, 0) = D2

[

−(1 − ν)
C20

b2
+ 2(1 + ν)D20

+ (3 + ν)E20 + (1 + ν)E20 ln b2

]

,

Qr(b, 0) = −4D2
E20

b
,

Vr(b, 0) = Qr(b, 0).

(311)

Spherical aberration 3rd-order mode – Sphe 3 (n = 4, m = 0, q = 64D1A40):

B40 =
{

ν + γ(5 − ν) − [(1 + ν) + γ(1 − ν)] ln a2
}

a4A40,

C40 = 2[(1 + ν) + γ(1 − ν)]a4A40,

D40 = [1 − ν − γ(5 − ν + 4 ln a2)]a2A40,

E40 = 8γa2A40,

Mr(b, 0) = D2

[

−(1 − ν)
C40

b2
+ 2(1 + ν)D40

+ (3 + ν)E40 + (1 + ν)E40 ln b2

]

,

Qr(b, 0) = −4D2
E40

b
,

Vr(b, 0) = Qr(b, 0).

(312)

Coma 3rd-order mode – Coma3 (n = 3, m = 1):

B31 = (1 − γ)[3 + ν − (1 − ν) ln a2]
a2A31

2
,

C31 = −(1 − γ)(1 + ν)
a4A31

2
,

D31 = γA31,

E31 = (1 − γ)(1 − ν)a2A31,

Mr(b, 0) = D2

[

2(1 − ν)
C31

b3
+ 2(3 + ν)D31b + (1 + ν)

E31

b

]

,

Qr(b, 0) = −2D2

[

4D31 −
E31

b2

]

,

Vr(b, 0) = −D2

[

−2(1 − ν)
C31

b4
+ 2(5 − ν)D31 − (1 + ν)

E31

b2

]

.

(313)

Appl. Math. & Math. Physics (Journal)



90 GÉRARD R. LEMAITRE

Astigmatism 3rd-order mode – Astm 3 (n = 2, m = 2):

B22 = [4 + (1 − γ)(1 − ν)]
A22

4
,

C22 = −(1 − γ)(1 − ν)
a4A22

12
,

D22 = −(1 − γ)(1 − ν)
a−2A22

6
,

E22 = 0,

Mr(b, 0) = 2D2

[

(1 − ν)B22 + 3(1 − ν)
C22

b4
+ 6D22b

2 − 2ν
E22

b2

]

,

Qr(b, 0) = −8D2

[

3D22b +
E22

b3

]

,

Vr(b, 0) = −4D2

[

(1 − ν)
B22

b
− 3(1 − ν)

C22

b5

+ 3(3 − ν)D22b + (1 + ν)
E22

b3

]

.

(314)

Astigmatism 5th-order mode – Astm 5 (n = 4, m = 2):

B42 = 3(1 − γ)(3 − ν)
a2A42

4
,

C42 = −(1 − γ)(1 + ν)
a6A42

4
,

D42 = [γ − (1 − γ)(1 − ν)]
A42

4
,

E42 = −3(1 − γ)(1 − ν)
a4A42

4
,

Mr(b, 0) = 2D2

[

(1 − ν)B42 + 3(1 − ν)
C42

b4
+ 6D42b

2 − 2ν
E42

b2

]

,

Qr(b, 0) = −8D2

[

3D42b +
E42

b3

]

,

Vr(b, 0) = −4D2

[

(1 − ν)
B42

b
− 3(1 − ν)

C42

b5

+ 3(3 − ν)D42b + (1 + ν)
E42

b3

]

.

(315)

Triangle 5th-order mode – Tri 5 (n = 3, m = 3):

B33 = [2 + (1 − γ)(1 − ν)]
A33

2
,

C33 = −(1 − γ)(1 − ν)
a6A33

8
,

D33 = −3(1 − γ)(1 − ν)
a−2A33

8
,

E33 = 0,
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Mr(b, 0) = 2D2

[

3(1 − ν)B33b + 6(1 − ν)
C33

b5

+ 2(5 − ν)D33b
3 + (1 − 5ν)

E33

b3

]

,

Qr(b, 0) = −24D2

[

2D33b
2 +

E33

b4

]

,

Vr(b, 0) = −6D2

[

3(1 − ν)B33 − 6(1 − ν)
C33

b6

+ 2(7 − 3ν)D33b
2 + (1 + 3ν)

E33

b4

]

.

(316)

• Monomode forces Fa,k and Fc,k. In order to generate the bending moments Mr

and net shearing forces Vr at r = b for a given mode znm, we remark that the MDM
design gains in compactness by applying axial forces at r = a and r = c, not at
r = b and r = c. For each mode (n, m), the corresponding axial forces, denoted by
Fa,k and Fc,k, are determined from the statics equilibrium equations (see Fig. 7):

Fa,k + Fc,k = b

∫ π(2k−1)/K

π(2k−3)/K

Vr(b, θ) dθ, (321)

(a − b)Fa,k + (c − b)Fc,k = b

∫ π(2k−1)/K

π(2k−3)/K

Mr(b, θ) dθ, (322)

k = 1, 2, . . . , K for a MDM having K arms.

• Resultant multimode forces Fa,k and Fc,k. The forces Fa,k and Fc,k are determined
for each mode by solving the system (32). The coaddition of various modes is
obtained by summing the corresponding forces. The resultant forces Fa,k and Fc,k

to apply to the MDM are

Fa,k =
∑

nm modes

Fa,k, Fc,k =
∑

nm modes

Fc,k. (33)

7. Vase form MDM with 12 radial arms: experiment and results

A stainless steel MDM with 12 arms (K = 12) was designed and built in quenched
Fe87 Cr13 alloy [1] (Fig. 8). Its optical clear aperture is 2a = 160 mm. Table 1
displays the geometrical parameters of this MDM and the associated intensities of
forces Fa,k and Fc,k applied at r = a and r = c to generate deflections of 10µm
peak-to-valley for some Clebsch–Seidel modes. A diagram showing the distribution
of Clebsch–Seidel modes of the optical triangular matrix and some He–Ne interfero-
grams obtained with this MDM are displayed by Fig. 9.
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92 GÉRARD R. LEMAITRE

T
a
b
le

1
.

D
is
tr

ib
u
ti
on

of
ax

ia
l
fo

rc
es

F
a

,k
an

d
F

c
,k

of
a

tw
el

ve
-a

rm
p
la

n
e

M
D

M
(K

=
1
2
).

Q
u
en

ch
ed

F
e8

7
C

r1
3

st
ai

n
le

ss
st

ee
l,

E
=

2
0
5
1
0
9

P
a,

ν
=

0
.3

0
5
,

d
es

ig
n
ed

w
it
h

t 1
=

8
m

m
,

γ
=

(t
1
/
t 2

)3
=

1
/
2
7
,

a
=

1
0
0

m
m

,
b/

a
=

1
.2

4
an

d
c/

a
=

1
.6

.
T

h
e

P
tV

am
p
li
tu

d
e

of
ea

ch
C

le
b
sc

h
–S

ei
d
el

m
od

e
is

w
=

0
.1

m
m

,
i.
e.

,
A

2
0

=
w

/
a
2
,
A

4
0

=
w

/
a
4
,
A

3
1

=
w

/
2
a
3
,
A

2
2

=
A

2
0
/
2
,
A

4
2

=
A

4
0
/
2

an
d

A
3
3

=
A

3
1

A
n
gl

e
A

rm
C

v
1

S
p
h
e
3
∗

C
o
m

a
3

A
st

m
3

A
st

m
5

T
ri

5

nb
.

(n
=

2
,
m

=
0
)

(n
=

4
,
m

=
0
)

(n
=

3
,
m

=
1
)

(n
=

2
,
m

=
2
)

(n
=

4
,
m

=
2
)

(n
=

3
,
m

=
3
)

θ
k

F
a

,k
F

c
,k

F
a

,k
F

c
,k

F
a

,k
F

c
,k

F
a

,k
F

c
,k

F
a

,k
F

c
,k

F
a

,k
F

c
,k

0
1

−
1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
−

8
4
.0

71
.6

15
4.

0
−

1
7
.0

16
8.

2
29

.9
79

2
37

.3

π
/
6

2
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
−

7
2
.7

62
.0

77
.0

−
8
.5

84
.1

14
.9

0
0

π
/
3

3
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
−

4
2
.0

35
.8

−
7
7
.0

8.
5

−
8
4
.1

−
1
4
.9

−
7
9
2

−
3
7
.3

π
/
2

4
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
0.

0
0.

0
−

1
5
4
.0

17
.0

−
1
6
8
.2

−
2
9
.9

0
0

2
π
/
3

5
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
42

.0
−

3
5
.8

−
7
7
.0

8.
5

−
8
4
.1

−
1
4
.9

79
2

37
.3

5
π
/
6

6
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
72

.7
−

6
2
.0

77
.0

−
8
.5

84
.1

14
.9

0
0

π
7

−
1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
84

.0
−

7
1
.6

15
4.

0
−

1
7
.0

16
8.

2
29

.9
−

7
9
2

−
3
7
.3

7
π
/
6

8
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
72

.7
−

6
2
.0

77
.0

−
8
.5

84
.1

14
.9

0
0

4
π
/
3

9
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
42

.0
−

3
5
.8

−
7
7
.0

8.
5

−
8
4
.1

−
1
4
.9

79
2

37
.3

3
π
/
2

10
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
0.

0
0.

0
−

1
5
4
.0

17
.0

−
1
6
8
.2

−
2
9
.9

0
0

5
π
/
3

11
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
−

4
2
.0

35
.8

−
7
7
.0

8.
5

−
8
4
.1

−
1
4
.9

−
7
9
2

−
3
7
.3

1
1
π
/
6

12
−

1
1
3
.3

11
3.

3
−

4
6
4
.0

30
2.

4
−

7
2
.7

62
.0

77
.0

−
8
.5

84
.1

14
.9

0
0

*
T

h
e

u
n
if
or

m
lo

ad
to

ge
n
er

at
e

th
e

S
p
h
e
3

m
od

e
is

q
=

6
4
D

1
A

4
0

=
0
.0

6
1
7
2

M
P
a.

Appl. Math. & Math. Physics (Journal)



ELASTICITY THEORY OF THIN PLATES AND ACTIVE OPTICS 93

Fig. 8. View of the twelve-arm vase form and plane MDM. Geometrical parameters
are a = 80 mm, b/a = 1.25, c/a = 1.8125, t1 = 4 mm, t2/t1 = 1/γ1/3 = 3. Elasticity
constants of quenched stainless steel Fe87Cr13 are E = 2.05·104 daN· mm−2 and ν = 0.305.
Deformation modes are generated by rotation of differential screws at r = a and r = c.
Air pressure or depressure can be applied onto the rear side of clear aperture r 6 a for
generating the Sphe 3 mode

Fig. 9. Upper: Distribution of Clebsch–Seidel modes into the optical triangular matrix
(piston z00 not shown). When q = 0, we obtain m = n modes and m = n − 2 modes (D1

and D2 diagonal lines). When q = const, we obtain m = 0, n = 4 mode (upper and second
from left).
Lower: He–Ne laser interferograms obtained with the 12-arm vase MDM displayed by
Fig. 8.
Upper diagonal boxes: Tilt 1 mode; Astm 3, Tri 5 and Squa7 modes of D1 line; lower boxes:
Cv 1 and Coma 3 modes of D2 line
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8. Vase form: solutions to generate Astm3 mode with four forces
only

The 3rd-order astigmatism aberration, Astm3, is caused by the reflection of a non-
focused beam on a spherical mirror when the principal ray of the incident beam
is not reflected perpendicularly to mirror surface but makes a deviation angle with
respect to this incident ray. As a characterization, the reflected beam shows two
different curvatures in orthogonal directions.

The correction of Astm3 can be achieved by use of a deformed plane mirror
or a deformed spherical mirror which shape is a hyperbolic-paraboloid or a toroid,
respectively.

Vase form configurations using four forces without arms instead of eight forces
with K = 4 arms (called degenerated configurations) are presented hereafter for
correcting the Astm3 mode. These configurations bring interesting solutions for
practical applications. These solutions, where all Fc,k = 0, use a vase form and only
four forces applied at the rear side of the outer ring.

8.1. Analysis and theoretical results: degenerated configurations

• Forces Fa,k applied to the inner edge of the ring. Eliminating Fa,k in equa-
tions (32), we deduce Fc,k. After nulling these forces, we obtain for the quadrant
centered at θ = 0, i.e., k = 1,

(b − a)

∫ π/4

−π/4

Vr(b, θ) dθ +

∫ π/4

−π/4

Mr(b, θ) dθ = 0. (34)

Since Vr and Mr have the same modulation in cos(2θ), this condition leads, for
θ = 0, to

(b − a)Vr(b, 0) + Mr(b, 0) = 0. (35)

After substitution of B22, C22, D22 and E22 coefficients expressed by equation
set (314), the net shearing force and radial bending moment at r = b are, re-
spectively,

Vr(b, 0) = −2(1 − ν)D2A22

(

1 −
a

b

)[

2 +
1

2
(1 − γ)(1 − ν)

(

1 −
a4

b4

)

− (1 − γ)(3 − ν)
b2

a2

]

, (361)

Mr(b, 0) = 2(1 − ν)D2A22

[

1 − (1 − γ)
b2

a2
+

1

4
(1 − γ)(1 − ν)

(

1 −
a4

b4

)]

. (362)

The substitution in equation (35) leads to the condition

1 −
a

b
−

1
1−γ − b2

a2 + 1
4 (1 − ν)

(

1 − a4

b4

)

2
1−γ − (3 − ν) b2

a2 + 1
2 (1 − ν)

(

1 − a4

b4

) = 0, (37)
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Fig. 10. Vase form configurations generating Astm3 (primary astigmatism mode) z22 =
A22r

2 cos(2θ) with only four forces: a – forces Fa,k applied to the ring inner edge at r = a;
b – forces Fb,k applied to the ring outer edge at r = b; c – force Fm,k applied to the mid-
circle of the ring rear surface. This latter configuration is most convenient for practical
applications

where γ = D1/D2 = (t1/t2)
1/3 < 1. Although the b/a ratio must be close to unity

for practicable reasons, solutions t2/t1 can be found for a < b < 1.15a (Fig. 10;
Table 2).

Table 2. Solutions for vase form mirror geometries generating the Astm3 mode z22 with
only four forces Fa,k, i.e., ∀Fc,k = 0, applied at the inner edge r = a of the ring. The
ratios b/a and t2/t1 are given with respect to Poisson’s coefficient ν

b/a t2/t1

ν = 0.15 ν = 0.20 ν = 0.30

1.050 2.21 2.22 2.23

1.075 1.96 1.96 1.97

1.100 1.80 1.80 1.81

1.125 1.69 1.69 1.70

1.150 1.60 1.61 1.62

• Forces Fb,k applied to the outer edge of the ring. Assuming that the forces applied
to each end of radial arms at r = b and r = c are denoted Fb,k and Fc,k, respectively,
the equations for statics equilibrium read, for k = 1, 2, 3, 4,

Fb,k + Fc,k = b

∫ π(2k−1)/4

π(2k−3)/4

Vr(b, θ) dθ, (381)

(c − b)Fc,k = b

∫ π(2k−1)/4

π(2k−3)/4

Mr(b, θ) dθ. (382)

Researching a condition for nulling Fc,k, from (31) and (143) we have for the outer
ring

Mr = D2

[

∂2z

∂r2
+ ν

(

1

r

∂z

∂r
+

1

r2

∂2z

∂θ2

)]

, (39)

z = R22 cos(2θ) = (B22r
2 + C22r

−2 + D22r
4 + E22) cos(2θ), (40)
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where the rigidity D2 of the outer ring is a constant. This leads to

Mr = 2D2

[

(1 − ν)B22 + 3(1 − ν)C22r
−4 + 6D22r

2
]

cos(2θ). (41)

The integration on θ from −π/4 to π/4 of equation (382) is not necessary
since one searches to null Mr for nulling Fc,k. Then, using the analytical value
of coefficients B22, C22, D22 and E22 in (314), a necessary condition is given by
Mr(r = b, θ = 0) = 0. After substitution and simplification, we obtain the condi-
tion

4

1 − γ
+ 1 − ν − (1 − ν)

a4

b4
− 4

b2

a2
= 0, (42)

where γ = D1/D2 = (t1/t2)
1/3 < 1.

This equation allows solutions t2/t1 for b/a-ratios such as 1 < b/a < 1.15
(Fig. 10, b; Table 3).

Table 3. Solutions for vase form mirror geometries generating the Astm3 mode z22 with
only four forces Fb,k, i.e., ∀Fc,k = 0, applied at the outer edge r = b of the ring. The
ratios b/a and t2/t1 are given with respect to Poisson’s coefficient ν

b/a t2/t1

ν = 0.15 ν = 0.20 ν = 0.30

1.050 2.54 2.52 2.47

1.075 2.21 2.19 2.15

1.100 2.00 1.98 1.95

1.125 1.85 1.84 1.82

1.150 1.74 1.73 1.71

• Forces Fm,k applied to the mid-circle of the ring rear area. For practical reas-
ons it has been found convenient to achieve the astigmatism deformation Astm 3
of a vase form mirror with four orthogonal forces Fm,k applied at the mid-circle
r = 1

2 (a + b) of the rear side of the outer ring (Fig. 10, c). The corresponding vase
form geometries with Fc,k = 0 can be deduced by adopting the mean values t2/t1
of previous Tables 2, 3 (Table 4).

Table 4. Solutions for vase form mirror geometries generating the Astm 3 mode z22 =
A22r

2 cos(2θ) with only four forces Fm,k applied at the mid-circle r = 1

2
(a + b) of the rear

surface of the ring. The ratios b/a and t2/t1 are given with respect to Poisson’s coefficient ν

b/a t2/t1

ν = 0.15 ν = 0.20 ν = 0.30

1.050 2.38 2.37 2.35

1.075 2.08 2.07 2.06

1.100 1.90 1.89 1.88

1.125 1.77 1.76 1.76

1.150 1.67 1.67 1.66
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8.2. Boundary conditions for practical applications

The above solutions for generating the Astm3 mode provide a pure and accurate
parabolic flexure in radial directions, however obtaining an accurate cos(2θ) modu-
lation along the perimeter surface requires use of appropriate boundary conditions.
Since each of four Fm,k forces are discrete, as results from integrations of a continu-
ous force distribution f cos(2θ) dθ which should be applied all along the perimeter,
it is preferable not to apply the four forces directly to the outer ring but to adopt
one of the following alternative designs.

• Outer ring with variation of the axial thickness. The rear side of the ring departs
from a flat surface and shows four wedged shapes where each forces Fm,k are applied.
The variation of the axial thickness t2 along the ring distributes a smooth and
accurate flexure in cos(2θ) with only four forces applied at the wedges. The axial
thickness t2(θ) in a quadrant, designed and optimized by Hugot et al. [13], [14], is

t2(θ) = λt1

[

1/2 − 2θ/π

cos(2θ)

]1/3

, 0 6 θ 6
π

2
, (43)

which satisfies t2(θ) = t2(π/2 − θ) and leads to t2(0)/t2(π/4) = 3

√

π/2 = 1.162 . . . ,
and where λ is a constant depending on b/a, ν and E. In fact, the four wedges are
not made angularly sharp but show a square flat area to allow sealing a removable
metal part used for the force applications with springs (Fig. 11). This alternative
vase form has been designed and built for three spherical concave mirrors in Zerodur
(ν = 0.24) and it is bring to various toroid shapes by stress figuring. These off-axis
mirrors belong to the main optical train of Sphere, the new planet finder instrument
of ESO’s VLT.

Fig. 11. a – alternative design for obtaining a pure cos(2θ) modulation of the flexure
with four discrete axial forces Fm,k applied to a four-wedged outer ring of thickness t2(θ);
b – view of one of three Zerodur toroid mirrors of the Sphere planet finder optical train
installed at ESO’s VLT; c – He–Ne interferogram of the Astm3 saddle-like aspherisation
after stress polishing and elastic relaxation

• Outer ring with forces acting on angular bridges. In this alternative design one still
has a ring of constant thickness t2, but instead of directly applying the external force
Fm,k in a direction where the angular modulations are at maximum amplitude, one

4 ПМиМФ, т.1 №1
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Fig. 12. a – alternative design for obtaining a pure cos(2θ) modulated flexure by keeping
the ring axial thickness t2 = const, the four forces Fm,k are subdivided into eight forces
via orthogonal bridges with ∆θ = 22.5◦ angular arch separation; b – view of the one-piece
stainless steel matrix for making concave toroid gratings, via replicas, for the single surface
spectrographs CDS and UVCS of the SOHO Mission; c – He–Ne fringes of the Astm 3
saddle-like aspherisation

subdivides each forces into two equal force components via bridges linked to the ring.
Each of four forces acts at the center of a bridge. The two arch feet are linked to
the ring by tangentially thin ends that are equivalent to articulations. These bridges
can be made of metal and removable for glass mirror substrates. A smooth and
accurate cos(2θ) modulation of the flexure is achieved when the angular separation
of the two arch ends is ∆θ = π/16 = 22.5◦.

Deformable active matrices with four bridges (Fig. 12) were first designed and
built for making (via replications process) the toroid gratings of single surface spec-
trographs CDS and UVCS of the SOHO Mission (ESA/NASA) for solar studies
at Lagrange point L1. In this case, the thickness t1 was not a constant but of
the cycloid-like form (1 − r2/a2)1/3 simply supported by thin collar to the outer
ring [1].

For applications, a detailed geometry of each above vase form alternatives can
be optimized with finite element analysis. Besides, we make a design under the max-
imum admissible stress σult of the material substrate, so it is useful to determine
the bending force intensities. Starting from equation (381), using equation set (314),
and assuming that b and a are about similar, i.e., Fm,k ≃ Fb,k, we obtain as a first
approximation for k = 1

Fm,1 ≃ Fb,1 = −(1−ν)(1−γ)

[

4

1 − γ
+1−ν +(1−ν)

a4

b4
−2(3−ν)

b2

a2

]

D2A22. (44)

From condition given by equation (42), for the four forces we have

Fm,k = −(−1)k2(1 − ν)2(1 − γ)

(

b2

a2
−

a4

b4

)

D2A22, k = 1, 2, 3, 4. (45)

This set of forces is by itself in static equilibrium, i.e., self-reacting.
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9. Conclusions

Deformable vase form substrates can provide a highly accurate flexure for correcting
the primary astigmatism aberration Astm3 within diffraction limited criteria. Two
alternative boundary configurations applied to this design allow use of four self-
reacting forces only if they are located far from the optical surface in agreement
with Saint-Venant’s principle.

The substrate material can be either a vitro-ceram glass such as Zerodur or
a metal alloy with linear stress–strain relationship as chromium stainless steel in
a quenched state. Vase form designs will find many applications for large telescope
mirror segments used off-axis and also in astronomical optics as off-axis mirrors
of unobstructed planet finder instruments and for obtaining saddle-shaped concave
gratings used in spectrographs [1], [15].

More generally, other Clebsch–Seidel modes rn cos(mθ), such as those with
m = n, can be also accurately generated from vase form geometries and by use
of four forces only.

The author is grateful to Patrice Joulié for the execution of drawings in the fi-
gures.
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