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Abstract. The flexure of cantilevers is one of the early problems, if not the first, to have been studied by the
elasticity theoreticians. One considers axisymmetrical rods and rectangular section beams. This investigation
concerns the case where the maximum stress is constant (Galilei-Euler—Clebsch problem) as well as the case
where the curvature of the medium fiber is constant. For both cases, it is shown that the equations to solve belong
to the same class. The research was into thickness distributions replying to those conditions under various loading
cases.

Atthe free end, the distributions obtained degenerate into a family for which the thickness is null, but contrary
to a widely held opinion, they also and naturally give forms showing a finite thickness at this end. The proposed
distributions have a general form which has not been found in the literature treating elasticity theory or strength
of materials [1-9]. They are extensions of Euler and Clebsch formulas.

Sommario. La flessione delle mensole & uno dei primi problemi, se non il primo che sia stato studiato dai teorici
di elasticita. Si considerano aste assialsimmetriche e travi a sezione rettangolare. Tale analisi concerne sia il caso
in cui la tensione massima ¢ costante (Galilei-Euler—Clebsch problems), sia quello in cui lo ¢ la curvatura della
fibra media. Per entrambi i casi si dimostra che le equazioni risolventi appartengono alla medesima classe. Si
ricercano le distribuzioni di spessore corrispondenti alle suddette situazioni, in riferimento a varie condizioni di
carico.

All’estremo libero le distribuzioni ottenute degenerano in una famiglia per la quale lo spessore ¢ nullo
ma, contrariamente ad un’opinione largamente diffusa, esse inoltre forniscono naturalmente delle forme che
presentano uno spessore finito a tale estremo. Le distribuzioni proposte hanno una forma generale che non &
presente nella letteratura tecnica concernente la teoria dell’elasticita o la resistenza dei materiali [1-9]. Esse
costituiscono alcune estensioni delle formule di Eulero e Clebsh.
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1. Introduction

The flexure of cantilevers is one of the early problems that was investigated by the elasticity
theoreticians. We owe the determination of some thickness distributions of equal strength beams
to Euler and to Clebsch, about which Galilei had foreseen a solution [1-9]. The thickness
distributions A (z) of bars having a constant curvature are researched in order to compare them
with those providing an equal strength.

Let us consider bars of length [, having a built-in end at the origin z = 0. The axis of
symmetry of these bars is Oz, the other horizontal axis being Ox. The flexure w(z) is in the
vertical direction, i.e. Oy axis. Denoting E as the Young modulus, the local curvature 1/r at a
point of z abscissa is linked to the maximal stress o located at the bar surface, i.e. at a distance
7/2 from the neutal fiber, by the relationship
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I being the inertia moment with respect to Ox. The flexural moment is

d?w 1 o
Denoting P the weight of a rod, the shearing force T (z) is of opposite direction to the sum of
external forces applied onto the [z, ] segment

z 1
b4 4
T(z)=—P+ Zug/hzdz = —Zug/hz dz. 3)
0 Z

Similarly, for a beam of constant width a in the direction Ox and of thickness /4 (z) in the vertical
plane, the shearing forces due to own weight, to a force F vertically applied onto the free end
or to a uniform load f by length unit applied onto all the beam, are respectively

l
@) =-pga [hdz  ~Fi  ~(-2f @
Z
The equilibrium relationship for these bars is given by
dMm
— —T(z) =0. &)
dz

With these notations, the inertia moments of a rod of & diameter and of a beam of a width are
respectively

I, =nh*/64, I, =ah’/12. (6)
For bars which maximal stress o is a constant all along its surface, one has to solve equation

(5). 1.e.

d /I, _
20d—z (?) —T(z) =0. (7a)

For bars which the deformation curve shows a constant curvature 1/r (i.e. a parabola), one

has to solve

E d
——I1,—T() =0. (7b)
r dz

Let us consider hereafter various cases where one of the ends is built-in. The geometrical
representation of the thickness profile is denoted /(0) = hg at the built-in end and A (/) = h; at
the free end.

2. Bars Bent by a Force F at the Free End

All these bars belong to a thickness class defined by the solutions of a differential equation,
issued from equation (7a) or (7b), whose type is

dh
h?—+a=0, ®)
dz
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where p is an integer. These solutions are represented by the general form

p\ pHT ] D
h(z)=h0{1—[1—<h—é> L} . (92)

The thickness /; is defined by the relationship

hy\PH ol
1—(— = H——. 10
(h0> (p+ )thrl (10)

One remarks that &; remains finite. For 4; = 0, the distribution given by equation (9a) degen-
erates and simply becomes

z }1/(p+1)

h(2) = hg {1 -7 (9b)

As an example, let us consider the cases of rods of circular sections and beams of rectangular
sections having a constant width, bent according to a constant stress ¢ or a constant curvature
1/r. This leads to the study of four cases.

2.1. Rop FLEXED BY A FORCE F WITH CONSTANT CONSTRAINT

Let us consider constant constraint rods deformed by a vertical force applied onto the end

x = [. In this case, the shearing force is a constant 7 = —F. The differential equation of the
deformation is
dh 32 F
—+-=-=0, (11)
dz 3mo

i.e. p = 2. The solution

WARA . h\> 32 FI
h=ho{l—[1— (hi/ho)’1>t , withl— ——> ==,
I T ohy

o 12)

is a section of cubic parabola having its vertex at z; = /(1 — h13 /hg) and slope at the origin

[dh} _ ho . (h1>3
dz J,—9 3l ho) |
The flexure from equation (2) is
9 1%h) PR s z
0 313 3,13, %
=——— U1 —-00-=hi/hy)- —(1—hi/hy)— —14¢. 13
w 5Ea@-h%2{[ a-mmp2]" + 2a-mm)’ (13)
2.2. BEAM FLEXED BY A FORCE F WITH CONSTANT CONSTRAINT

Let us consider a beam of vertical thickness A (r) and of width a in the direction of the Ox axis,

deformed by a vertical force F applied atits end x = [. The shearing force T = —F is a constant.
From equations (2) and (6), M = aoh?/6. The differential equation of the deformation is
dh 3F
LI, (14)

dz ao
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Figure 1. The thickness distribution of a beam flexing under a constant constraint is a truncated parabola.

i.e. p = 1, and the solution

m\%2  6FI
-) = (15)

21172
h=ho{l—[1—(h1/ho)2]—} , withl—( =—>7,
l oah

ho

is a parabola section (cf. Figure 1). Equation (2) gives the deformation by taking into account
w(0) = 0 and [dw/dz],=¢ = 0, thus

21,3
8ol h0

we=—ort 0 [1 — (- hz/h2)fr/2 +2a—rmd o (16)
" 3E(hE —h))? HET07y 2 LET07y '

2.3. RoD FLEXED BY A FORCE F WITH CONSTANT CURVATURE

The vertical force F applied at the end z = [ generates a shearing force T = — F. The differential
equation of the thickness is

dh 16 Fr
X Dt 17
dz * T E {an
i.e. p = 3, and the solution
h=ho|1—|1 (h’)4 | with 1 (h’)4—64Frl (18)
- no) |1| ho) ~ mwERY

is the section of a biquadratic having a null axial curvature.

2.4. BEAM FLEXED BY A FORCE F WITH CONSTANT CURVATURE

The differential equation of the thickness is
dh Fr
h— 44— =0, 19
dz * Ea (19)

i.e. p = 2, and the solution

1/3 3
h1>3 z . (h1> 12Frl
h=holl—|1-(=) |2} , withl—(—) ="+, 20
O{ { (ho }z} ho) ~ Eahd 0
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is a section of cubic parabola. This form is identical to that obtained in Section 2.1.

For these constant curvature bars, the equation of deformation is obviously denoted w =
(1/2r)z2 with o = (E/2r)h(z).
3. Bars Deformed by a Uniform Line Load f

Let us consider bars bent by a uniform line load f vertically applied all along the length. For
the previously studied cases, relationships (7a) and (7b) lead to

L 2dn | 32f _
— rods with o = constant h ot Il —2)=0,

. 2
— beams with o = constant h%é’— + %(l —2)=0,

— rods with r = constant h3% + lf%f (I-2)=0,
— beams with r = constant hz% + 4;r]ff—(l —2)=0.

These bars belong to a thickness class solution of the equation

dh
hP— 4+ Bl —2) =0, - @D
dz
coming from
d dh
—(hP—]—-B=0 22
= () -s=0 @)

where p is an integer and 8 a coefficient having the dimension of p — 1. The separable variables
provide the solution of equation (21)

1
p+1

1
Pt = E'B(l —Z)2 + Cy.

The constant is determined by & = h; for (=0 thus C; = hf + /(p + 1), which allows to define

h; from B and hg

hy\PH 1 BI?
1— <_l) — &__‘B_ (23)

By substitution, one obtains
2
AR e (T S T s (1 - ;) : 24)

and finally the studied distributions to be compared with equation (9a)

+1 1/(p+1)
h(z)zho{l—[le(%)p }(z-?)?] . (252)

For h;=0, they degenerate and become more simply
z 12/(p+D)
} , (25b)
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to be compared to (9b). They give a triangular distribution with cutting edge for the beams at
constant constraint (p = 1) and also free ends with vertical tangents, i.e. a rounded edge for the
three other cases (p = 2 and p = 3).

4. Bars Deformed Under Their Own Weight

One considers bars flexing under their own weight. With the treated examples, the starting
equations, issues from (7a) and (7b), are as follows:

. _ . d (;2dh\ _ 8ug;2 _

— rods with o = constant & (h '—dz) roh” = 0,
i = ot d dh\ _ 3ugy __

— beams with o = constant i (h_dz> = h =0,
: _ d 3dh) _ 4ugrp2

— rods with » = constant s (h _dz) 5 h =0,

— beams with r = constant d% (hzg—@ — 4"—5% =0.

These bars belong to a thickness class solution of the second-order equation

d dh
134 — Bh1 =0, 26
&z ( dz) B (26)

where p and ¢ are integers and f a coefficient having the dimension p — g — 1. This class
contains that of the previous section for ¢ = 0. Denoting H such as [10]

H=h"*/(p+1), 27)
one obtains

d’H

— —B(p+ e/ P+ ga/p+h = o
dz

thus, multiplying by 2d H /dz,

2
_Sl_ (9_{{) —2B(p + 1)61/(P+1)HQ/(P+1)d_H =0.
dz \ dz dz
The integration leads to
2
(ﬂ) _ 2B D) g et D D) |
dz p+aqg+l ’
and coming to 4(z)
2
(%> A Nl
dz p+qg+1
so that to integrate
hPdh
‘= / 28, ptq+l 12" (28)
[p+q+lh' + Cl]
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If one denotes C; = ——Z,Bhlp + /(p + 1) for g = 0, one recovers the relations (23) and (24) of
the previous section. By analogy, one can define 4; such as:
Cr=—=280"""" Y (p+ g+ D). (29)
The general solution of equation (26) must satisfy
+q+1\!/? hPdh
L= (p 26] ) / pra+l_  prati (30)
p [k — bk 1

In the practical examples previously considered, the value of integers p and g are:
— rod o = constant, p=2andg=2, p+qg+1=5
— beam o = constant, p=landg=1 p+g+1=3
— rod r = constant, p=3andg=2, p+qg+1=6
— beam r = constant, p=2andg=1, p+qg+1=4
and the integration is also not possible for these integers since g # p + 1.

In counterpart, it is possible to obtain the distributions of bars having a null thickness at their
~ free edge, i.e. C; = 0:

1/2
frcim (20 e
) p—q+1 2812
Since & = 0 for z = [, one deduces that C» = —1 and
2
p+qg+1 2 l
This relationship allows defining the thickness at the origin /g by
- 2812 —q+1\?
n? g+l _ _ 2P (P g+ > . 31)
p+qg+1 2

The distributions studied in the particular case where the thickness is null at the free end are
finally

2 12/(p—a+D)
' } (32)

h(z) = hy {1 —7
This relationship is more general than equation (25b).

Returning to the general case, taking into account equation (29), one has

2
4 pTgq '

Let us express this equation under adimensional form. From equation (31), 8 « hg TIH =2 of
dimension —(g — p + 1). This allows definining /¢ in the general case such as

ot _ 1 2B (p—q—H)z
0 - 2 ’

Grp+gq+1

(33)
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where G is an adimensional coefficient which takes a unity value for the case of bars having a
null thickness at the free end. Denoting g o the thickness of these later at the built-in zone, as
given by equation (31), one can define G by the relationship

G* = (ho,o/ ho)? ™7™, (34)

So that the differential equation takes the adimensional form

[ dh\? 2 2 (hoo\P~a+ [/ h\PFa+L g \PRatT] N2
) = — — - — — . (35
(ho dz) (p—q-f-l) (ho ) (ho) (ho) (ho) 52
Finally, by using reduced variables 4/ hg and z/! and by choosing the negative sign in order to
have d(h/ ko) negative so that this is convenient for the particular case #; = 0 previously treated

. h ) ho o PR p\pratl g\ Pt 3 A —pd N\ e
(h_o)___p—q+l(h_o) (%) ‘“(;TJ (h—o) (;)-< )

A numerical integration allows to determine the /(z)/ ho distributions as function of the two con-
stants. For this, one has used the inverse of the overthickness ratio G 2/(P=4+1 to be determined
as a function of the thickness ratio A,/ kg, this later being given at the free end.

This resolution has been carried out starting from h;/ hg ratios contained between 0 and 1,
and by finding hg o/ ho ratios so that k(z)/ ho becomes equal to h;/ hg for z =1 [cf. Table 1 and
Figure 2].

In the four cases considered, the slope of the distributions obtained are somewhat similar to
those given by the relationship (32) with #;=0. With the case of constant curvature rods, where
the solution for ~;=01s a cone, one can notice in Figure 3 that the distribution is a quasi-truncated
cone.

5. Conclusions

The solutions described include the case of bars for which the free end is at null thickness and
vertical tangent such as found in some examples in the literature [2-9]. They also include bars
for which the free end is a cutting edge or a pointed edge. In the general case, the distributions
that have been found with equations (9a) and (25a) generate a thickness remaining finite at the
free end.

The expeditious formulation existing in most of the works dealing with these questions [cf.
Clebsch-Annotée, Timoshenko] is incorrect since it consists in stating that, to avoid a null
thickness at the free end, one has to make a local overthickness here in such manner that the
shearing force will not break the bar. This study demonstrates that, in all cases, the uniconstant
theory provides by itself a satisfying answer.

With the case of bars deformed by a force F at the free end, one finds identical distributions
for constant constraint rods and constant curvature beams. This result applies also to the case
of a line force f. By symmetrizing those cantilevers with respect to their built-in plane, thus
doubling their length, the present formulas apply. For sufficiently wide plates, i.e. x direction,
these results could be applied to obtain cylindrical mirrors deformed from a plane. This would
allow the compensation of astigmatism aberration due to tilted collimator or camera mirrors as
often used in astronomical spectrographs.

It can be of interest to go from the one-dimensional problem of bars deformed by such
external forces to the two-dimensional problem. The cases of a circular plate bent by a central
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Table 1. hg o/ ho ratios as function of k;/ hy

hifhg p=2,g=2 p=1l,g=1 p=3,9g=2 p=2,qg=1

0.000 1.0000 1.0000 1.0000 1.0000
0.025 0.7475 0.7770 0.9810 0.9847
0.050 0.6539 0.6932 0.9623 0.9697
0.100 0.5323 0.5827 0.9249 0.9397
0.150 0.4475 0.5041 0.8876 0.9096
0.200 0.3816 0.4420 0.8502 0.8795
0.250 0.3280 0.3902 0.8129 0.8492
0.300 0.2829 0.3456 0.7755 0.8195
0.400 0.2109 0.2713 0.7005 0.7557
0.500 0.1554 0.2103 0.6247 0.6895
0.600 0.1115 0.1583 0.5468 0.6176
0.700 0.0758 0.1127 0.4647 0.5368
0.750 0.0604 0.0917 0.4206 0.4912
0.800 0.0463 0.0717 0.3733 0.4405
0.850 0.0334 0.0527 0.3211 0.3827
0.900 0.0214 0.0344 0.2606 0.3136
0.950 0.0103 0.0169 0.1833 0.2225
0.975 0.0050 0.0084 0.1293 0.1577
1.000 0.0000 0.0000 0.0000 0.0000

Figure 2. Representation of /g,/ ho as function of &,/ hg. For intermediate values of h;/ hg, the distributions
giving constant curvatures (top) vary less than those giving constant constraints (down).
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Figure 3. Thickness distribution of a rod flexing under its own weight according to a constant curvature (case
p = 3 and ¢ = 2) and for &/ hy = 1/5. The form differs slightly from that of a truncated cone. One finds
G = hoo/ho =0.8129.

force, by a uniform load or by both has been investigated by the author who has found variable
curvature mirrors and aberration corrected active mirrors [11-13]. These mirrors are useful to
astronomy [14-15].

With the case of bars deformed by their own weight, the formula (32) provides all the possible
distributions for a null thickness end. When this thickness end remains finite, the resulting
integration is displayed by Table 1. This shows that, for h;/ k¢ intermediate values to the [0,1]
domain, the constant curvature distributions vary much less than the constant constraint ones
such as displayed by Figure 2.
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Appendix. Notes to the References

Reference [1]: Galilei was the first to be interested in the flexure of cantilevers and discovered the
notion of equal strength solids.

Scheme of an equal strength cantilever by Galilei from Discorsi.

Reference [2]: Euler studied the flexure of equal resistance cantilevers having a flat form, i.e. a
constant vertical thickness 4 and a variable width a(z) deformed by a vertical force F applied onto the
free end. Thus, Euler discovered that a(z) linearly decreases to provide a vertical cutting edge at the end
z=l. Starting from equation (7), one can check that this triangle distribution is also the correct solution
of the equal curvature problem. When the horizontal thickness remains finite at z=/, I have found that
this distribution becomes a trapezoid expressed as a(z) = ag[1 — (1 —a;/ag)z/1]. The width difference
of the ends is ag — a; = 6Fl//’l2()’ = 12FI r/Eh3. Let z; be the abscissa of the intersection point of the
lateral sides onto Oz. It is then shown that zs/ag = h? 0 /6F = Eh3/12F r = constant i.e. the width
variation of the trapezoid remains a constant which is not dependent on the width a; at the free end.

Reference [3]: Clebsch gave the distributions of constant constraint rods having edge thicknesses
h; = 0 for two deformation cases: (i) flexed under their own weight p = ¢ = 2 (cf. Section 4) where he
found a parabola and (ii) flexed by a vertical force p = 2 where he found a cubic parabola (cf. Section
2) (cf. [5; pp. 857-858] and [6; pp. 163—-164]).




