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Abstract. Multimode deformable mirrors allow to superpose optics aberration modes up to high orders.
The elasticity analysis leads to consider mainly Clebsch–Zernike modes that belong to a sub-class of optics
modes. Theoretical results and associated geometries are also derived for some single modes. This allows
discovering degenerated configurations using a minimal set of applied external forces. We present inter-
ferometric results from active optics experiments including the degenerated configurations for third-order
astigmatism and fifth-order triangle modes.
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1. Introduction and Active Optics Methods

Active optics methods applied to the design and construction of optical mirrors are of
particular interest because they naturally provide smooth and accurate optical surfaces.
Compared to the conventional method of generating aspherics, active optics allows avoid-
ing the zonal defects of slope discontinuities due to inherent local polishing tools. Then,
such optical surfaces are generated free from high spacial frequency errors. The aspher-
ized optical surface can be used: (i) after stress polishing when in a relaxed state, (ii)
during in situ stressing after a spherical polishing, or, (iii) under a combination of the
two cases.

Active methods also provides as well axisymmetrical surfaces or non-axisymmetrical sur-
faces. Current applications and developments of active optics are in the following fields:

1. large amplitude aspherization by stress polishing and/or by in situ deformation
[1–8],

2. in situ compensation of deflections due the orientation of optics in the field gravity
[9–11],

3. availability of a variable asphericity for various focii selected by mirror interchanging
[1, 2],

4. field compensation and cophasing by variable curvature for optical telescope arrays
[2, 4],
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5. segments and gratings obtained by replication techniques from active submasters [1–
3],

6. mirror conceptual models for optical mode corrections with adaptive optics systems.

The case of obtaining non-axisymmetric mirrors such as off-axis mirrors defined
locally from an axisymmetric shape, or on-axis mirrors for correcting the aberrations of
a non-centred system requires the simultaneous correction of several wavefront modes. In
the present linear domain, this is achieved by elastic mode coaddition.

1.1. Remark on Mirror Substrate Manifolds

Given the difficulty of superposing many optical modes with mirror substrates belonging
to the variable thickness distribution (Vtd) class, we emphasize the fact that mirror sub-
strates belonging to the constant thickness distribution (Ctd) class do provide accurately
this superposition capability. Thus, we only consider hereafter mirrors belonging to the
Ctd class.

2. Concept of Multimode Deformable Mirrors

We consider a plate or a slightly curved meniscus of clear aperture radius a and constant
thickness t1; this defines the active surface of a Multimode Deformable Mirror (Mdm).
The practicable external loads are the three following cases :

– contour axial forces Va and contour bending moments Ma without uniform loading, i.e.
q =0,

– uniform loading q =constant applied onto all the clear aperture, in reaction at the edge
r =a,

– the coaddition of the two previous loadings.

The alternatives for Mdm geometries are (i) a meniscus form plane or moderately curved
and (ii) a vase form plane or moderately curved :

– A meniscus form is designed with a single plate or a meniscus of semi clear aperture
r =a. Radial arms in number km are clamped to its edge at r =a in order to generate
the multimode deformations by applying Fa,k and Fc,k external forces on each arm k at
its ends r =a and c. This design has been developed [5, 6] for the stress-polishing of
the mirror segments of the Keck Telescope where 36 of them constitute a 10 m aper-
ture paraboloid primary mirror; each segment is a superposition of the two aberration
modes Astm3 and Coma 3.

– A vase form Mdm is designed with an inner meniscus providing the optics clear aper-
ture of diameter 2a, and an outer ring clamped to the edge of the inner meniscus.
Radial arms in number km are clamped to ring outer radius r =b. Discrete forces Fa,k

are applied at r = a onto the rear side of the ring; a same number of Fc,k forces are
applied onto the end of the arm at r =c. The azimuth location θ of the arms is defined
by the integer k belonging to the numbers 1,2,3, . . . , km for a km-arm Mdm, with
θ =0⇔k =1 (Figure 1).
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Figure 1. Elasticity design of a vase form Mdm. Clear aperture 2a. Concentric zones of thicknesses t1 at
0<r <a, and t2 at a <r <b. Radial arms km =12. With respect to Saint–Venant’s principle, the forces are
applied as far as possible from the optical surface in order to prevent from local deformations due to the
shear component of the flexure.

3. MDM Elasticity Theory and Clebsch–Zernike Modes

The Mdms use constant thickness plates and rings, thus, for moderate curvatures and
thicknesses, the equation of deflection for small deformations Z is

∇2∇2Z (r, θ)=q/D with D =Et3/[12(1−ν2)]= constant, (1)

where ∇2 is the laplacian, q the uniform loading, and D the rigidity.
With vase forms, two rigidities are necessarily considered D =D1 for 0<r <a (inner

zone) and D = D2 for a < r < b (outer zone), with corresponding thicknesses t1 and t2
respectively. E, is the Young’s modulus and ν is the Poisson’s ratio.

3.1. Inner Zone

For simplification, we avoid here the sin mθ function terms that provide similar solutions
rotated of θ =π/2 in the cylindrical coordinate system and would allow generating defor-
mation modes in any given azimuth. Thus, we consider flexure modes that are identical
to optical modes and defined by

Z =
∑

znm =
∑

Anmrn cosmθ, n+m even, m�n, (2)

where n and m are positive integers. Since the optical modes – dioptric modes and aber-
ration modes – representing a wavefront are represented from a triangle matrix defined
by n+m even and m�n, we will consider hereafter an identical triangle matrix for Anm

coefficients of the flexure modes, i.e. with the same composition rules for n and m.
Given a mode znm, by substitution in the 4th derivative equation, we obtain:

Anm(n2 −m2)[(n−2)2 −m2]rn−4 cosmθ =q/D (3)
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with n � 2. The only combinations of n and m for which the equation can be solved
are :

– case q =0→m=n i.e. A22,A33,A44, ... terms,
→m=n−2 i.e. A20,A31,A42, ... terms,

– case q = constant →n=4, m=0 i.e. the A40 term.

These two cases define a sub-class proposed to be called Clebsch–Zernike modes.
Except for the z40 mode, these modes are the two lower diagonals of the optics triangle
matrix.

3.2. Outer Zone

The flexure of the outer ring, which is in a clamped link with the inner zone, is
represented by

Z =
∑

znm =Rn0 +
∞∑

m=1

Rnm cosmθ, (4)

where Rnm(r) satisfy the Clebsch’s equation [12]
(

d2

dr2
+ 1

r

d

dr
− m2

r2

)(
d2Rnm

dr2
+ 1

r

dRnm

dr
− m2

r2
Rnm

)
=0 , (5)

and have the following forms:

Rn0 =Bn0 +Cn0 ln r +Dn0r
2 +En0r

2 ln r, (6a)

Rn1 =Bn1r +Cn1r
−1 +Dn1r

3 +En1r ln r, (6b)

Rnm =Bnmrm +Cnmr−m +Dnmrm+2 +Enmr−m+2, (6c)

3.3. Boundary Conditions

The boundaries between the two zones at r =a must provide a continuity of the flexure
znm, slope dznm/dr , bending moment Mr and net shearing force Vr . The radial and tan-
gential bending moments Mr , Mt , and the twisting moment Mrt are, respectively, defined
by

Mr =D

[
∂2z

∂r2
+ν

(
1
r

∂z

∂r
+ 1

r2

∂2z

∂θ2

)]
, (7a)

Mt =D

[
1
r

∂z

∂r
+ 1

r2

∂2z

∂θ2
+ν

∂2z

∂r2

]
, (7b)

Mrt = (1−ν)D

[
1
r2

∂z

∂θ
− 1

r

∂2z

∂r∂θ

]
. (7c)

This representation of the flexural moments entails a positive flexure if a positive radial
bending moment is Mr is applied at r =a for generating the fundamental mode z20 (cur-
vature mode). For znm modes with m=n, we may also verify that Mr is positive in the
x, z section i.e. if y = θ = 0. This sign convention is natural and also in agreement with
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the generally used optics convention of a positive curvature if an optical surface belongs
to the positive space of z axis when its vertex is at the origin z=0.

The radial and tangential shearing forces Qr and Qt are derived from the static equi-
librium of the moments at the elementary segment dr r dθ around the radial and tangential
axes passing by the origin. These are, respectively,

Qr =−∂Mr

∂r
− 1

r

(
Mr −Mt − ∂Mrt

∂θ

)
=−D

∂

∂r
(∇2z), (8a)

Qt =−1
r

(∂Mt

∂θ
−2Mrt

)
+ ∂Mrt

∂r
=−D

1
r

∂

∂θ
(∇2z), (8b)

where the second equalities on left-hand side are obtained by substitutions of the
moments using their representation in equations (7a)–(7c).

The equilibrium of the shearing forces with the external and uniform load q demon-
strates the Poisson biharmonic equation

q =−1
r

[
∂

∂r
(rQr)+ ∂Qt

∂θ

]
=D∇2∇2z. (8c)

The net shearing force Vr , derived by the Kirchhoff condition when a twisting moment
Mrt exists into the plate, is represented by 1

Vr =Qr − 1
r

∂Mrt

∂θ
. (9a)

This force allows the correct determination of the acting or reacting force existing at the
boundaries. After substitution of Qr and Mrt , we obtain

Vr =−D
∂

∂r
(∇2z)+ (1−ν)D

1
r

∂

∂r

(
1
r

∂2z

∂θ2

)
. (9b)

Let us denote γ the rigidity-ratio between the two zones as

γ = D1

D2
= t3

1

t3
2

, γ <1 for a vase form. (9c)

The previous relations allow writing the continuity conditions of the two zones at
r =a. The continuity of ordinates, slopes, bending moments and net shearing forces are,
respectively, represented by

1The present definition of the net shearing force Vr allows predicting the degenerated configurations
presented hereafter in Sections 4 and 6 where these results are experimentally verified.
There is an error in Theory of Plates and Shells by Timoshenko and Woinowsky–Krieger at Equation (j) p.
284: Their convention uses an opposite sign in the definition of the three moments Mr,Mt , and Mrt while
the sign of their shearing forces Qr and Qt with respect to the Laplacian term is as above equations (8a)
and (8b), so that the two equations in (8c) are the same. Hence the correctly associated representation of
the net shearing force should be Vr =Qr + ∂Mrt/(r∂r), with their notation.
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Anman =Rnm(a), (10a)

Anmnan−1 =
[
dRnm

dr

]

r=a

, (10b)

Anm[n(n−1)+ν(n−m2)]an−2 = 1
γ

[
d2Rnm

dr2
+ ν

r

dRnm

dr
− νm2

r2
Rnm

]

r=a

, (10c)

Anm[(n−2)(n2 −m2)+ (1−ν)(n−1)m2]an−3 =− 1
γ

[Vr(Rnm)]r=a. (10d)

This equation set allows to solve Bnm,Cnm,Dnm and Enm as functions of Anm in order to
determine the distributions of bending moments Mr(b, θ) and net shearing forces Vr(b, θ)

to apply at the ring edge r =b.
For the first Clebsch–Zernike modes, these determinations lead to the following

relationships:
Curvature 1st-order mode - Cv1, n=2,m=0,

B20 = (1−γ )(1+ν)(1− ln a2)a2A20/2,

C20 = (1−γ )(1+ν)a2A20,

D20 = [2− (1−γ )(1+ν)]A20/2,

E20 =0,

Mr(b,0)=D2[−(1−ν)C20/b
2 +2(1+ν)D20 + (3+ν)E20 + (1+ν)E20 ln b2],

Qr(b,0)=−4D2E20/b,

Vr(b,0)=Qr(b,0). (11a)

Spherical aberration 3rd-order mode - Sphe 3, n=4,m=0, with q =64D1A40,

B40 ={ν +γ (5−ν)− [(1+ν)+γ (1−ν)] ln a2}a4A40,

C40 =2[(1+ν)+γ (1−ν)]a4A40,

D40 = [1−ν −γ (5−ν +4 ln a2)]a2A40,

E40 =8γ a2A40,

Mr(b,0)=D2[−(1−ν)C40/b
2 +2(1+ν)D40 + (3+ν)E40 + (1+ν)E40 ln b2],

Qr(b,0)=−4D2E40/b,

Vr(b,0)=Qr(b,0). (11b)

Coma 3rd-order mode – Coma 3, n=3,m=1,

B31 = (1−γ )[3+ν − (1−ν) ln a2]a2A31/2,

C31 =−(1−γ )(1+ν)a4A31/2,

D31 =γA31,

E31 = (1−γ )(1−ν)a2A31,

Mr(b,0)=D2[2(1−ν)C31/b
3 +2(3+ν)D31b+ (1+ν)E31/b],

Qr(b,0)=−2D2[4D31 −E31/b
2],

Vr(b,0)=−D2[−2(1−ν)C31/b
4 +2(5−ν)D31 − (1+ν)E31/b

2]. (11c)
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Astigmatism 3rd-order mode – Astm 3, n=2,m=2,

B22 = [4+ (1−γ )(1−ν)]A22/4,

C22 =−(1−γ )(1−ν)a4A22/12,

D22 =−(1−γ )(1−ν)a−2A22/6,

E22 =0,

Mr(b,0)=2D2[(1−ν)B22 +3(1−ν)C22/b
4 +6D22b

2 −2νE22/b
2],

Qr(b,0)=−8D2[3D22b+E22/b
3],

Vr(b,0)=−4D2[(1−ν)B22/b−3(1−ν)C22/b
5 +3(3−ν)D22b+ (1+ν)E22/b

3].

(11d)

Astigmatism 5th-order mode – Astm 5, n=4,m=2,

B42 =3(1−γ )(3−ν)a2A42/4,

C42 =−(1−γ )(1+ν)a6A42/4,

D42 = [γ − (1−γ )(1−ν)]A42/4,

E42 =−3(1−γ )(1−ν)a4A42/4,

Mr(b,0)=2D2[(1−ν)B42 +3(1−ν)C42/b
4 +6D42b

2 −2νE42/b
2],

Qr(b,0)=−8D2[3D42b+E42/b
3],

Vr(b,0)=−4D2[(1−ν)B42/b−3(1−ν)C42/b
5 +3(3−ν)D42b+ (1+ν)E42/b

3].

(11e)

Triangle 5th-order mode – Tri 5, n=3,m=3,

B33 = [2+ (1−γ )(1−ν)y]A33/2,

C33 =−(1−γ )(1−ν)a6A33/8,

D33 =−3(1−γ )(1−ν)a−2A33/8,

E33 =0,

Mr(b,0)=2D2[3(1−ν)B33b+6(1−ν)C33/b
5 +2(5−ν)D33b

3 + (1−5ν)E33/b
3],

Qr(b,0)=−24D2[2D33b
2 +E33/b

4],

Vr(b,0)=−6D2[3(1−ν)B33 −6(1−ν)C33/b
6 +2(7−3ν)D33b

2 + (1+3ν)E33/b
4].

(11f)

In order to achieve the bending moments Mr and the net shearing forces Vr at r =b,
it is to be noticed that the Mdm design gains in compactness by applying axial forces at
r = a and r = c instead of at r = b and r = c. With this choice, the axial forces denoted
Fa,k and Fc,k are defined by the statics equilibrium equations

Fa,k +Fc,k =b

∫ π(2k−1)/km

π(2k−3)/km

Vr(b, θ)dθ, (12a)

(a −b)Fa,k + (c−b)Fc,k =b

∫ π(2k−1)/km

π(2k−3)/km

Mr(b, θ)dθ, (12b)

with k=1,2, . . . , km for a Mdm having km arms. The forces Fa,k and Fc,k are determined
for each mode by solving this system.
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The coaddition of various modes is obtained by summing the corresponding forces.
The resulting forces to apply Fa,k and Fc,k are

Fa,k =
∑

nm modes

Fa,k and Fc,k =
∑

nm modes

Fc,k. (13)

As an example, Table 1 displays the Fa,k and Fc,k forces of a 12 arms and 20 cm aper-
ture Mdm providing Clebsch–Zernike modes of 0.1 mm PtV sags.

The coaddition mode capability can be used for generating the shape of the secondary
and tertiary mirrors of telescopes designed with a liquid primary mirror [13–15] in sys-
tems observing off-zenith [16, 17]. This can also be used as recording compensators for
the generation of aberration corrected holographic gratings [18–20]. The results of sin-
gle and some composed Clebsch–Zernike modes obtained with the twelve-arm vase form
Mdm are displayed by Figure 2 with the optics triangle matrix. The three interferograms
on down-left are a coaddition of z20 + z40, and coadditions of z22 + z24 modes, respec-
tively.

3.4. Link of Radial Arms to a Vase Form

The axial forces Fa,k and Fc,k defined by (12a) and (12b), and displayed in the case of
Table 1, strictly correspond to a clamped link of the arms into the vase ring along a rela-
tively narrow zone centred at r =b; from the design in Figure1, this would require adding
an extra axial thickness in order to physically separate the arms from the ring. Since the
ring surface is optically useless, it has to be designed relatively narrow for most practi-

Table 1. Vase form and force distribution with a km=12-Arm Mdm

Angle Arm Cv 1 Sph 3∗ Coma 3 Astm 3 Astm 5 Tri 5

nb. n=2 m=0 n=4 m=0 n=3 m=1 n=2 m=2 n=4 m=2 n=3 m=3
θ k Fa,k Fc,k Fa,k Fc,k Fa,k Fc,k Fa,k Fc,k Fa,k Fc,k Fa,k Fc,k

0 1 −113.3 113.3 −464.0 302.4 −84.0 71.6 154.0 −17.0 168.2 29.9 792 37.3

π/6 2 −113.3 113.3 −464.0 302.4 −72.7 62.0 77.0 −8.5 81.4 14.9 0 0

π/3 3 −113.3 113.3 −464.0 302.4 −42.0 35.8 −77.0 8.5 −81.4 −14.9 −792 −37.3

π/2 4 −113.3 113.3 −464.0 302.4 0.0 0.0 −154.0 17.0 −168.2 −29.9 0 0

2π/3 5 −113.3 113.3 −464.0 302.4 42.0 −35.8 −77.0 8.5 −81.4 −14.9 792 37.3

5π/6 6 −113.3 113.3 −464.0 302.4 72.7 −62.0 77.0 −8.5 81.4 14.9 0 0

π 7 −113.3 113.3 −464.0 302.4 84.0 −71.6 154.0 −17.0 168.2 29.9 −792 −37.3

7π/6 8 −113.3 113.3 −464.0 302.4 72.7 −62.0 77.0 −8.5 81.4 14.9 0 0

4π/3 9 −113.3 113.3 −464.0 302.4 42.0 −35.8 −77.0 8.5 −81.4 −14.9 792 37.3

3π/2 10 −113.3 113.3 −464.0 302.4 0.0 0.0 −154.0 17.0 −168.2 −29.9 0 0

5π/3 11 −113.3 113.3 −464.0 302.4 −42.0 35.8 −77.0 8.5 −81.4 −14.9 −792 −37.3

11π/6 12 −113.3 113.3 −464.0 302.4 −72.7 62.0 77.0 −8.5 81.4 14.9 0 0

* The required uniform loading to generate Sph3 mode is q =64D1A40 =0.06172 daN/mm2.
Ptv Sags: w = 0.1mm. FeCr13 stainless steel: E = 205 × 109Pa, ν = 0.305. Geometry: a = 100 mm, t1 =
8 mm, b/a=1.24, c/a=1.8125, γ = (t1/t2)

3 =1/27. Coefficients: A20 =w/a2,A40 =w/a4,A31 =w/2a3,A22 =
A20/2,A42 =A40/2,A33 =A31.
(Units: daN)
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Figure 2. (Up) Diagram showing the distribution of Clebsch–Zernike modes into the optics triangle matrix
(1st mode not shown). → q = 0 provides m = n modes, and m = n − 2 modes (D1 and D2 diagonals).
→q = constant provides m=0, n=4 mode (where z40 mode is coupled with z20 mode). (Down) Defor-
mation interferograms obtained with a 12-arm vase form prototype mirror described in Figure 1 and Table
1. From left to right, the interferograms are as follows: (Up diagonal boxes) T ilt 1, Astm 3, T ri 5 and
Squa 7 modes, (Middle line boxes) Curv 1 and Coma 3 modes, (Bottom line boxes) Mirror at rest with
respect to a plane, coaddition of Curv 1 and Sphe 3 modes, coaddition of Curv 1, Sphe 3 and Astm

3 modes, and coaddition of Astm 3 and Squa 7 modes.

cal applications. Then, using compact designs with integrated arms into the ring thickness
from r = a to r = b – such as displayed by Figure 1 – is in quite good agreement with
the analysis provided b/a � 1.2 or 1.25. However, for a strict agreement with the force
intensities such as derived from the analysis, the inner end of the arms can be partially
separated from the ring by making a radial clearance from r = a to a convenient radius
r =a +κ(b−a)/(κ +1) where 0<κ �2 or 3.



242 Gérard R. Lemaître

Some particular monomode deformations can be obtained with a vase or a meniscus
form by only requiring Fc,k forces, i.e. where Fa,k forces vanish, thus reducing the num-
ber of force points by a factor two. For instance this is the case for z22 and z33 modes,
and more generally for znm modes provided m=n.

Such configurations with a minimal force-point number will be found hereafter from
the above analysis.

4. Degenerated Configurations for Third-order Astigmatism

In the case of third-order astigmatism z22 =A22r
2 cos 2θ , particular configurations can be

derived if Fa,k =0. Since only requiring Fc,k forces, this simplify the design by reducing
the force number to minimum. Thus, we call them degenerated configurations. This con-
dition leads to define the associated ring geometry. For a vase form and a meniscus form,
we obtain from Equations (12a) and (12b).

(c−b)

∫ π(2k−1)/km

π(2k−3)/km

Vr(b, θ)dθ =
∫ π(2k−1)/km

π(2k−3)/km

Mr(b, θ)dθ. (14)

After substitution of coefficients for Astm 3 mode defined by Equation (11d), the result
of calculation shows that such degenerated solutions are provided by the condition

c

b
=1−

1+ (1−γ )(1−ν)

[
1

4
− 1

1−ν

b2

a2
− a4

4b4

]

2+ (1−γ )(1−ν)

[
1

2
− 3−ν

1−ν

b2

a2
+ a4

2b4

] (15)

4.1. Meniscus Form

In this case, the rigidity-ratio γ =1 and we can write b=a since the outer ring vanishes.
Therefore, we obtain the following properties

1 → Two pairs of opposite sets of Fc,k forces provide Astm 3 if

c/b= c/a =1/2. (16)

2 → With km =4 arms, the intensity and the direction of each force is

Fc,k = (−1)kEt3A22/3(1+ν) with k =1,2,3,4. (17)

The arms are folded to receive the external forces at their ends. The minimum number of
arms is km = 4. These solutions can be compared to four-force cycloid-like solutions pro-
vided by the Vtd class and using a free-edge warping ring [1–3]. A meniscus form mirror
with four arms providing an Astm 3 mode is displayed by Figure 3.

4.2. Vase Form

The external Fc,k forces are applied to the ends r = c of folded arms clamped at r =b.
→ With km =4 arms , the intensity and the direction of each force is
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Figure 3. True proportion design of a meniscus form mirror with four arms providing an Astm 3 deflec-
tion. Near the mirror perimeter, the built-in arms have been modified into built-in arches; this achieve a
better azimuth modulation in cos 2θ for large deformations.

Figure 4. Degenerated configuration of a four-arm vase form mirror providing an Astm 3 mode deflec-
tion. This solution satisfies the condition (15), expressing that Fa,k = 0, then only requires four external
forces. Substrate: FeCr13 stainless steel, ν =0.305. Geometry: clear aperture 2a =100 mm, 2a/t1 =20, γ =
1/27, b/a =6/5, c/b=0.7582. (Left) Rear side view of the mirror. (Right) Resulting He–Ne interferogram
after deflection. With respect to higher-order modes of the astigmatism family, the reduction of the inter-
ferograms shows that the purity of this mode is characterized by |A42/A22|�0.023 and |A62/A22|�0.005.

Fc,k = (−1)k(1−γ )(1−ν)2
[

4
(1−γ )(1−ν)

+1−2
3−ν

1−ν

b2

a2
+ a4

b4

]
D2A22. (18)

With four acting arms as a minimum to achieve this flexure, such a configuration has
been designed, built and experienced (Figure 4).
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5. Vase Form Mdms for All Reflective Schmidt Telescopes

Wide field All-Reflective Schmidt (Ars) telescopes or cameras does not suffer from
the chromatic variation of spherical aberration which is the limitation of conventional
Schmidts using a refractive plate as corrector of the associated spherical concave mirror.
As for a refractive corrector plate, the reflective plate defines the pupil of incident beams,
and its vertex is located at the center of curvature of the concave mirror. Let us consider,
with Arss, a circular correcting mirror as primary mirror.

5.1. Centered Ars Systems

In a centered Ars system, the optical design is of rotational symmetry and the field of
view has its center off the telescope axis. Denoting ρ = r/rm the dimensionless radial var-
iable, the aspherical shape of the primary mirror can be represented by [21]

ZOpt = rm

29�3 cos i
(3ρ2 −ρ4), (19)

where rm is the clear aperture radius and pupil, R is the curvature radius of secondary
mirror, �=f/d =R/4rm is the system f -ratio, and i is the incidence of principal ray at
primary.

The Anm coefficients can be defined from

ZOpt =A20 r2 +A40 r4, (20)

so that, from identifications, the Cv1 and Sphe3 amplitudes are

A20 = 3
29�3rm cos i

and A40 = −1
29�3r3

m cos i
. (21)

The primary mirror can be aspherized by stress polishing as well as by in-situ stress-
ing. The coaddition of the two modes is greatly simplified if the radial arms are sup-
pressed, that is

Fc,k|Cv1 +Fc,k|Sphe 3 =0. (22)

For these modes, the analytic expressions of Mr and Vr represented by Equations (11a)
and (11b) allow the determination of forces Fa,k and Fc,k by substitution in (12a) and
(12b). Therefore, the condition (22) is satisfied if the rigidity-ratio γ = t3

1 /t3
2 is defined

by

1

γ
=

16
[

2
a

b
−1− (1+ν) ln

a

b

]
− (5+ν)

[
1+ν + (1−ν)

a2

b2

]

(1−ν2)

(
1− a2

b2

) . (23)

The resulting geometry of a vase form primary mirror without arms is displayed by
Figure 5-Up where an enclosure plate simply supported at its edge allows applying a
partial vacuum to the mirror. Design parameters satisfying this equation for a numerical
application are displayed by Table 2.
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Figure 5. True proportion scheme of a vase form as Schmidt primary mirror in Zerodur.(Up) The coaddi-
tion of Cv 1 and Sphe 3 modes for a centered system used off-axis does not require radial arms but is
just achieved by closing the rear side of sc Mdm if the rigidity-ratio condition is satisfied. (Down) The
coaddition of Astm 3 and Astm 5 modes for a non-centered system requires a minimum of four bounded
arms in Invar.

Table 2. Examples of parameters for a Schmidt primary mirror with four arms

Angle Arm Cv1 Sphe 3∗ Astm 3 Astm 5

nb. n=2 m=0 n=4 m=0 n=2 m=2 n=4 m=2
θ k Fa,k Fc,k Fa,k Fc,k Fa,k Fc,k Fa,k Fc,k

0 1 −39.318 39.318 64.376 −39.318 −0.231 0.033 0.144 0.040

π/2 2 −39.318 39.318 64.376 −39.318 0.231 −0.033 −0.144 −0.040

π 3 −39.318 39.318 64.376 −39.318 −0.231 0.033 0.144 0.040

3π/4 4 −39.318 39.318 64.376 −39.318 0.231 −0.033 −0.144 −0.040

(	) The uniform loading is q =64D1A40 =−0.000798 daN mm−2.
Fc,k are opposite for Cv 1 and Sphe 3 avoiding radial arms for centered systems ArS.
f -ratio: �=5, Clear aperture: 2rm =2a =400 mm,
Field of view: 2ϕm =5◦, Incidence angle: i =ϕm +1/4�=5.35◦.
Elasticity constants of Zerodur: E =90.6×109 Pa, ν =0.240.
vase-MDM geometry: t1 =20 mm, t2/t1 = (1/γ )1/3 =2.791, b/a =1.150, c/a =1.5.
A20 =2.344×10−5, A40 =−1.945×10−10, A22 =−1.029×10−7, A42 =1.715×10−12 in mm1−n.
[Units: daN]

5.2. Non-Centered Ars Systems

We consider a non-centered Ars system with a bi-symmetric primary mirror, a concave
spherical secondary and a field of view centered on the central mechanical axis of the
secondary. The shape of the primary mirror is represented by [22]

ZOpt = rm

29�3 cos i
[3(1− t)ρ2 −3tρ2 cos 2θ − (1−2t)ρ4 +2tρ4 cos 2θ ], (24)

where i = ϕm + 1/4� for an unfolded Ars. The deviation angle 2i of the principal ray
should be larger if a flat folding holed-mirror is used to give outside access to the focus.
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If defining the primary mirror figure from

ZOpt =
∑

Anmrn cosmθ, (25)

then, the first Anm mirror coefficients are

A20 = 3(1− t)

29�3rm cos i
, A40 = −(1−2t)

29�3r3
m cos i

,

A22 = −3t

29�3rm cos i
, A42 = 2t

29�3r3
m cos i

. (26)

Four-arm Mdms are necessary to provide the coaddition z22 and z42 modes in non-
centered systems (Figure 4-Down). The axial forces Fa,k and Fc,k for each mode are dis-
played by Table 2.

6. Degenerated Configurations for Fifth-order Triangle Mode

Degenerated configurations also exist for the Triangle 5 mode z33 = A33 r3 cos 3θ with
Fa,k = 0. Such as for Astm 3, only Fc,k forces can be used for a mirror having an
arm-number km � 6. These solutions are derived from the condition achieved by Equa-
tion (14) and the substitution of the coefficients defined by Equation (11f). The resulting
particular geometry is provided by

c

b
=1−

1+ 1

4
(1−γ )(1−ν)

[
2− 5−ν

1−ν

b2

a2
− a6

b6

]

3+ 3

4
(1−γ )(1−ν)

[
2− 7−3ν

1−ν

b2

a2
+ a6

b6

]. (27)

The geometry of a vase form or a meniscus form satisfying Fa,k = 0 only use Fc,k

forces applied at the outer ends of the arms. From the condition (12a), these forces are

Fc,k =b

∫ π(2k−1)/km

π(2k−3)/km

Vr(b, θ)dθ. (28)

Choosing km =6 arm-number, we obtain after integration

Fc,k = (−1)k4(1−ν)

(
3B33 −6

C33

b6
+2

7−3ν

1−ν
b2E33

)
D2b with k =1,2, . . . ,6 (29)

and after substitution of the coefficients the six forces are represented by

Fc,k = (−1)k3(1−γ )(1−ν)2
[

4
(1−γ )(1−ν)

+2− 7−3ν

1−ν

a2

b2
+ a6

b6

]
D2bA33. (30)
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6.1. Meniscus Form Case

The rigidity-ratio reduces to γ =1 and does not depend on the Poisson’s ratio in this case.
Therefore,

1 → Three pairs of opposite sets of Fc,k forces provide Tri 5 if

c/a = c/b=2/3. (31)

2 → With km =6 arm menicus, the intensity and the direction of each force is

Fc,k = (−1)k
Et3a

1+ν
A33 with k =1,2, . . . ,6. (32)

6.2. Vase Form Case

As a general result from formula (27), the c/b ratios for vase forms are larger than those
for meniscus forms. This greatly improves the stability of the force equilibrium when
loading. For instance, with a km = 6 arm-number mirror, the Fc,k forces are given by
Equation (30) and a convenient choice of (t2/t1, b/a) in condition (27) allows finding
c=a which provides a quite compact design (Figure 6).

With vase form mirrors, the extra-thickness t2 − t1 is laid on only one side: the mirror
rear side. So the middle surface is not exactly a sphere (or a plane) of constant curva-
ture but is more curved at its edge towards the rear side. Now, from the point of view

Figure 6. Degenerated configuration of a six-arm vase form providing a T ri5 mode deflection. This solu-
tion satisfies condition (27), expressing that Fa,k = 0, and then only requires six external forces. Sub-
strate: FeCR13 stainless steel, ν =0.305. Geometry: clear aperture 2a =100 mm, 2a/t1 =20, t2/t1 =3, b/a =
1.2, c/b = 0.8382, then c/a = 1.0058 � 1. (Left) Design and view of the holosteric mirror. (Right) Result-
ing He–Ne interferogram after deflection. With respect to higher-order modes of the triangle family, the
reduction of the interferograms shows that the purity of this mode is characterized by |A53/A33|� 0.033
and |A73/A33|�0.0013.
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of the deformation presently derived from the elasticity theory, the whole middle surface
is assumed to be a sphere (or a plane) up to r = b. Thus the ring thickness t2 is theo-
retically considered as equally distributed on each sides of the middle surface, i.e. in a
T-shaped mirror edge. This difference in the shape of the middle surfaces is traduced in
practice by a small curvature mode – that may be call Cv1′ – that comes in addition to
the generated modes. Since MDMs use two forces per arm, the Cv1′ effect can be exactly
canceled by generating the anti-moments at the contour with those forces. With degener-
ated configurations, since there is only one force per arm, the exact balance of the azi-
muthal amplitudes can be recovered either by refocussing or if not possible by polishing
the mirror at a new spherical shape changed of the small amount −Cv1′. In the present
case of generating z33 mode, the Cv1′ effect is positive i.e. towards z positive. The mirror
displayed Figure 6 was designed with a plane surface and polished slightly convex to a
clear aperture sag of one He-Ne wavelength for obtaining the balanced interferogram. The
Cv1′ effect decreases when t2 → t1 and becomes zeroed in the case of meniscus mirrors.

7. Conclusion

Vase form Mdms are more efficient than meniscus form Mdms with respect to Saint Ve-
nant’s principle since with vase mirrors no slope discontinuities that could be due to the
shear component of the flexure appear near the location of acting forces. Compared to
the zonal retouch method, the active optics method with Clebsch–Zernike modes shows a
large capability to achieve smooth high-order corrections thus providing a significant gain
in image quality. This accurate method is of large potential development. Many applica-
tions of meniscus form as well as vase form Mdms are: mirrors of future giant telescopes
[23], off-axis mirrors for unobstructed large telescopes, aberration corrected mirrors for
physics laboratories, aberration corrected diffraction gratings for spectroscopy, and active
mirrors for high energy physics.

The development of active optics methods has also led to elasticity investigations on
equal curvature cantilever problems [24].
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