New Procedure for Making Schmidt Corrector Plates

Gérard Lemaitre

We describe what we call the dioptric elasticity method of making Schmidt plates.

An oversize disk is

supported on a narrow metal ring. Within this ring, the air underneath is partially evacuated; a

primary vacuum is formed under the outer annulus.

The elastically deformed disk is worked flat.

When the loads are removed, the disk takes on an excellent, smooth Kerber profile over the region
interior to the supporting ring. This produces more highly aspherical surfaces (/1) and is more con-

venient than the method attempted by Schmidt.

We give the elasticity theory, discuss our shop meth-

ods, and show the very satisfactory results.

Introduction

There are numerous reasons for the present great
importance of Schmidt catadioptric systems in their
applications to spectrography and the direct study of
extended objects.

Within the family of two-mirror anastigmats,® the
Schmidt telescope (in an idealized, on-axis, all-reflecting

form) is incontestably the instrument that possesses—

along with the curved-field Schwarzschild telescope—
the best compromisc between luminosity, physical
dimensions, and central obstruction. The Schmidt
has, furthermore, the advantage over the Schwarzschild
of requiring only one aspheric surface. This surface—
theoretically pseudoplane in the two-mirror anastigmat
series—is replaced in the catadioptric arrangement (for
obvious reasons of obscuration) by an aspheric refract-
ing plate that introduces only slight chromatism. For
uv work, it is necessary, for reasons of transparency,
that this plate be very thin; we shall see below that with
our figuring method it could not be otherwise because
the equations of clastic deformation impose this same
condition. In the Bouwers or Maksutov systems, the
correcting effect of the lens (concentric or afocal, re-
spectively) depends on its thickness. Such cameras
are thus distinctly less transparent.

Three-mirror anastigmats (again idealizing the cor-
recting plate by a mirror) of the Schmidt-Cassegrain
type,2? although having greater central obstruction,
present certain advantages: better accessibility of
the focal surface and the possibility of making the field
flat by having the Petzval sum equal to zero and also
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by making one of the two mirrors aspherical. This
type of camera is used, for example, on the Mariner
probes.*?

Historically, the idea of correcting the aberration of a
spherical mirror by use of a refracting plate goes back
to Kellner who patented this design in 1910.6 Later,
Schmidt presented this system as a means of achieving
small F-ratios. Schmidt seems to have been the first
to underline the importance of placing the correcting
plate at the center of curvature of the mirror, although
Kellner had in fact placed it in this position on his
patent drawing. Around 1930 at the Hamburg Ob-
servatory, Schmidt succeeded—after several judiciously
interpreted experimental trials—in producing corrector
plates by a method of elastic deformation.?

" Research up to now on this difficult problem of work-
ing aspherical surfaces suggests numerous methods using
thermal expansion, deposit of a variable-thickness coat-
ing, abrasion by projection of microparticles, refractive
index variation by neutron bombardment, chemical ac-
tion, geometrical distribution of polishing tool squares,
reproduction with cam and pentograph, numerical com-
mand arrangements, zonal figuring, elasticity of tools,
or elasticity of optics.

The sphere (or the plane) is the surface naturally
produced by the wear resulting from rubbing together
two indeformable solids of the same dimensions, with
arelative movement having three degrees of freedom.

When one wishes to make large size aspheric elements
of astronomical quality, one usually uses relatively
flexible full size tools, alternating with smaller tools.
This method is by far the most widely used, since it has
great practical advantages. However, when the flex-
ure of the full-size tool becomes insufficient for wearing
away the quantity of glass separating the spherical
surface from the surface desired and it becomes neces-
sary to do a good deal of zonal figuring, the small size
of the tools used gives rise to discontinuities in the pro-
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Fig. 1. Kerber profile (nondimensional coordinates). -

file. As aresult of these discontinuities, there are often
circles of stray light around star images in Schmidt
photographs, particularly for bright stars.

The new method described here, applicable to cor-
recting plates and thin lenses, uses full-size tools and was
developed in order to eliminate such discontinuities and
the resultant image defects.

Geometrical Optics

On-axis, and for a given wavelength, a parabolic
mirror possesses the same properties as a spherical
mirror combined with a refracting plate, the thickness
profile of which is such that it introduces into the inci-
dent plane wave a retard that is equal to twice the dis-
tance separating the parabola from its osculating sphere.
This plate is purely divergent with a thickness propor-
tional to the fourth power of the radius. Putting the
plate at the center of curvature of the associated spheri-
cal mirror, not only is the spherical aberration cor-
rected on axis, but the images are of excellent quality
over a much larger field than with a parabola. For
other wavelengths this system retains a slight chro-

matic aberration called the chromatic variation of"

spherical aberration.

If one accepts the difficulties of making any surface
whatever, and in particular, one having inflection
points, one can minimize the chromatic effects and ob-
tain a nearly perfect correction for spherical aberration,
even for quite large apertures (around F/1), with very
thin correctors having very weak mean power. Kerber,
in his memoir of 18868 suggests making the chromatic
correction of an objective for the zone of radius v/3H/2,
where 2H is the full aperture of the objective. Simi-
larly, the chromatic aberration of a Schmidt plate can
be minimized if it is made with a zero power zone called
the Kerber zone, at radius +/3H/2. The result is that,
for wavelengths different from that for which the plate
isfigured (the effective wavelength), the chromatic effect
is greatest for the zones of radii H/2 and H, and the
corresponding deviations have the same value but oppo-
site sign. In this case, if one considers the focal plane
defined by the light of the effective wavelength, the
extreme colors—arising from equal but opposite varia-
tions of index—produce coincident spots that form the
circle of least confusion.

Let r be the radius of curvature of the mirror, H the
pupil height, n the refractive index of the plate for
the effective wavelength, and = the height of the ray
considered. The vertex of the corrector surface coin-
cides with the center of curvature of thé mirror. The
focal point of the combination is the same as that de-
fined by the Kerber zone of the mirtor alone.

Let @ = r/4H = F/D be the F-ratio of the system
and also let p = z/H be the reduced radius for an in-
cident ray. If we suppose Q2 > 2, we make only a
slight error in the most unfavorable case in expressing
the profile of the plate as®

1
= (8,2 . ).
ZSch T (€73 p*)-H, (1)

0,21

In third-order theory, this polynomial is called the
Kerber profile (see Fig. 1).

Elasticity

We shall first describe, briefly, Schmidt’s experi-
mentally developed method. A plane-parallel plate of
thickness h is supported around the edge by the opti-
cally flat rim of a sort of bowl that can be rotated.
The two surfaces are put into good contact, and the
volume under the plate is partially evacuated, with
pressure p. If pois the atmospheric pressure, the plate
is subjected to a uniform load ¢ = po — p. It is elasti-
cally deformed by this load, the deformation from a
plane surface tangent at the center being given by

_3(1“”)2 1_13 3+V2_ 4).
ZElas— 16 E(h) (21+VP P H: (2)

0<p =<1

where E and v are the Young’s modulus and the Pois-
son’s ratio, respectively, of the glass used.

The accessible surface of the plate is ground and
polished using a convex spherical tool. If R is the
radius of curvature and setting s = H/2R, the equation
of the just polished surface—still deformed by pres-
sure—is now that of the sphere:

Zy = o(p* + w?p*)-H, (3)

0<p=<L
If, now, we remove the plate from the partially evacu-
ated bowl, the bottom surface will revert to a plane, but

the top surface will become aspherical. Thus we will
obtain a Kerber profile if

Zseh — Zglas + Zx = 0. 4)

By identifying the coefficients in p? and p* in Eq. (4)
and setting then each equal to zero, we can eventually
solve for the two parameters, B and A, that are at our

disposal. For @, we find the following third-degree
equation:
34 v 1 21 + 5v 1
5 —_— =
TR Tt e - D@ 0

This equation always has a unique and positive real
root. This root is very much smaller than unity since
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Q2 > 2; consequently o is negligible (0 < v < 1/2).
This is equivalent to saying that the coefficient of p*
in the development of the sphere is negligible relative
to the coefficient of p?for the elastic deformation.

Since » = S8mQR, the radius of the spherical tool can
be expressed as a function of the radius r of the mirror,

Bt m 1),
B= =1 o

For example, if » = 1/5and n = 3/2, R ~ 1.745 Q.
Knowing &, we deduce the thickness of the plate,

6))

3
b= [g 1 = ) — 1)%] o, (6)

Relations (5) and (6) define completely the execution
conditions. A rapid calculation of maximal tensile
stresses shows the desirability of choosing a maximum
load ¢ (i.e., 1 atm, with a full vacuum under the plate)
if one wants to obtain greatly aspheric plates, and that
rupture of the glass occurs for glass type BSC B1664 at
an F-ratio of 1.75 if only one face is figured or for F/1.40
if both faces are figured.

With the imperative condition that the supporting
rim define a plane to within 0.1 gm, this method has the
advantage of not having a zone for which the derived
equation of the surface is not formally identical to that
required by geometrical optics. Weshall see below that
if one accepts an unusable zone at the edge, it becomes
possible to find a configuration of load and support
that results in plates of twice the asphericity possible
with the above method. The inconvenience of having
to use a different radius tool each time one makes a plate
for a different F-ratio can be eliminated since a flat tool
isused.®

The disk of radius R. is supported on a metal ring of
radius Ry, which divides the surface into two zones (Fig.
2). A load p; is exerted on zone 1 (inner) and a load
P2 in zone 2 (exterior to R1) by means of partial or total
evacuation of the air under each zone. The disk is
deformed and is ground and polished flat while under
these loads. A peripherical ring connected to the sup-
port aids in centering the plate and also assures an air-
tight seal by means of an O-ring. This sliding O-ring
touches neither surface of the plate but only the edge,
and exerts negligible force, so that the edge of the plate
is free to move transversally.

The differential equation for small deformations w
of a thin plate of constant thickness % is that due to
Lagrange:

D-v2(viw) —p = 0, Q)
where
D = Eh3/12(1 — »?).

D is the rigidity constant of the plate, and p is the load
on the plate. Because of the rotational symmetry,
we can use the Laplacian operator V2 in polar coordi-
nates given by
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Fig. 2. Principle of the dioptrig elasticity method.

Using the reduced radius p and reduced deformation
Y defined by

p = R/Ryand Y = (64D/Ripo)w,

where po is a constant (ambiant pressure) and defining
the reduced operator A. as

A. = (1/p)(d/0p)[p(d./0p)],

we see that v2 = (1/R?)A., and thus Eq. (7) can be
written as

A(AY) — 64p/po = 0. 8)
Integration of Eq. (8) gives us

Y(p) = (p/po)p* 4 C1p*Inp + (Cu — Cr)p?
+ Crrlnp + Crv. (9)

Thus it is necessary to consider two sets of constants
C1, Ci1, Crr, and Crv—one set for the interior and one
for the exterior zone. In each case, their values are
obtained from the boundary and continuity conditions,
which are as follows.!' (The analytic solutions for the
inner and outer zones are denoted by Y; and Y, re-
spectively.)

Boundary conditions:

0 0Y,/0p = 0  (slope),
p =
dAY,/dp = 0 (transverse shear stresses),
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Fig. 3. Grid of profiles for different values of p2 for o = 1
and » = 1/5.

0AY,/dp = 0 (transverse shear

stresses),
02Y32/0p% + (v/p)OY3/dp = 0 (bending couple).
Continuity conditions:

Y1 =0
Y, =0
0Y1/0p = 2Y,/dp (slope continuity),

02Y1/0p? = 32Y»/dp® (continuity of bending couple).

(origin of deformations),
(origin of deformations),

The two first conditions (at p = 0) require the con-
stants C'1 and Crir to both equal zero; this results in a
biquadratic form for Y;(p) in zone 1.

The loads p; and p, applied to the plate in zones 1
and 2, respectively, are constants in these zones; we
can characterize them by nondimensional parameters
g1 and ¢, where

@ = pyPoand g2 = py/po.
The displacements can then be written as

Yi(p) = qup* + Xip® + Xo,
0<,p<1.

 (10a)

Ya(p) = qup* + Xsp?Inp + (X4 — X3)p? + Xslnp + X5  (10b)
1 <0< pa

The six constants X1, X, ..., X; depend on three
parameters: » (Poisson’s ratio), p; (i.e., Ry/R;), and
7 (i.e., ¢2/q1) which give the geometrical characteristics
of the profile. Tigure 3 represents the array of ¥, and
Ys called Y1,0(p) for various values of p; with » = 1/5

and n = 1. The Poisson’s coefficient being imposed
by the nature of the glass, there is an infinity of pairs
(p2, m) that formally satisfies the equation of the Kerber
profile for zone 1. By proceding by working the sur-
face flat, one eliminates the inconvenience produced
by the execution of a spherical surface by Schmidt’s
method. The geometrical figure obtained is always a
Kerber profile no matter what the thickness is. In
fact, the choice of different thicknesses allows one to
make correctors for different F-ratio mirrors without
changing the apparatus or tools used. However, it is
always preferable to make the plate first and then to
redetermine the proper curvature of the mirror by
carefully measuring the asphericity of the completed
plate.

A search for pairs (pz,n) giving Kerber profiles has
been made for 0 < » < 1/2. We note that for 7 =1,
the surface area of zone 2 (which is not useful) is at a
maximum. For n > 1, the area of zone 2 decreases,
and the limiting case—for which 7 is infinite—requires
a plate of zero thickness, excluding all possibility of
application. Thus a fortiori we chose the compromise
3 < 7 < 6 for large diameter correcting plates.

For each pair (ps, ) giving a Kerber solution, it is
necessary to know how the maximal tensile stresses
vary as a function of radius in order to be able to com-
pare it to the rupture tensile strength. The radial
bending couple can be written as

2w v Qw 1 oY ) 4
e = D'(a—m * m) - 6—4&%-(3—,,2 t, a—,,)-

Let M be the reduced bending couple such that
Mr = -glszpo'M(P)-
Then v
Mi(p) = 43 + »)@p® + 2(1 + »)X,
0<,<1,

M(p) = 4(3 + »)gzp®.+ 2(1 4 »)X3Inp + 2(1 + »)X,
+ (1= »)Xs — (1 — »)Xs/p?%

Fig. 4. Rupture pattern of a fused silica disk.

July 1972 / Vol. 11, No. 7 / APPLIED OPTICS 1633




1<p=<p,

and the corresponding maximal tensile strength for each

zone is
3 (R\?
ae \ 7 M maxie
32 (h ) x.z(P)

For BSC B1664 glass, one finds that rupture occurs
for a corrector for an F/1.40 system if one face is figured;
if both sides are figured, the limit is F/1.10. We have
made quartz plates for F/1 systems by this method;
this represents the limit of possibilities for classical
optical materials.

U'I.Z(P)mnxi =

Execution of the Plate

In beginning this work it is preferable to have a small
sample of glass available for destructive testing to
measure or verify the Young’s modulus and the yield
stress. Tor this test one can use a disk supported at
the edge and progressively decrease the pressure p
underneath, thereby increasing the load. The test
plate must of course be thin enough to rupture at a load
of less than 1 atm. As p decreases, a measure of the

central deflection a gives the Young’s modulus since
3 R*
E = 16 G+ »)A = )@ — p) prrs

As the load is increased, a measure of the pressure
just before rupture gives the tensile strength,

2
Trupt = 2(3 + vXPo = Prupt) (g) .

Figure 4 shows a sample of fused silica shattered in
this manner. Note the excellent homogeneity evi-
denced by the symmetry of the rupture.

When 5 # 1 the pressure apparatus can be constituted
by the system shown in Fig. 5. A vapor in equilibrium
with its liquid at 0°C provides the pressure in zone 1;
a primary vacuum is maintained in zone 2.

Small variations of pressure (leaks) or of temperature
(heating by polishing) in zone 1 are thus immediately
compensated for by the boiling or condensation of a part
of the liquid. A cold trap must be placed ahead of
the pump to protect against communication between
the two zones and especially to purge zone 1 at the begin-
ning. Table I lists liquids useful for this purpose as

7,

N/
f

=)

v 11l e lelebd

C

Fig. 5. Pressure apparatus showing (1) liquid in equilibrium with its vapor, (2) ice water, (3) liquid nitrogen, and (4) airtight sliding
O-ring.

1634 APPLIED OPTICS / Vol. 11, No. 7 / July 1972



Table I. Vapor Pressure of Some Compounds at 273 K

Designation of P
(mm Hg) 7%

Formula UIC
C.H.O0 Ethane,1,2-epoxy 494 .3 2.86
C.H, Butadiyne 518.2 3.15
CHCLF Methane, dichloro- 524.8 3.23
fluoro
C:H, Propane, 2,2-dimethyl 529.4 3.29
C.H, 1-Butyne . 537.2 3.41
CH;CISi Silane, chloromethyl 549.3 3.60
COCl, Carbonyl, chloride 550.6 3.63
C.H:N Amine, dimethyl 555.2 3.71
C:Hz0 Ether, ethyl-methyl 561.8 3.83
CHSS Methanethiol 569.7 3.99
C;0: Propadiene,1,3-dioxo 588.4 4.46
CH, 1-Buten-3-yne 617.2 5.32
IF, Todine heptafluorine 619.7 5.42
CH;Br Methane,bromo 659.8 7.58

e = q2/q = Po/ (po — p) with pp = 760 mm Hg.

Asph

Fig. 6. Interferometric mountings.

calculated from the physical constants!? using Dupré’s
formula,

logp = a — ;i, — v logT.

Mountings 1 and 2 of Fig. 6 permit us to obtain easily
the interference fringes of constant thickness between
the front and back surfaces of the plate. In mounting
1, it is necessary to semialuminize the two surfaces to
enhance the contrast and give narrow fringes (Fig. 7).

For mounting 2 (Fizeau interferometer) a He-Ne laser
is used (Fig. 8). These two mountings give excellent

reading precision since one fringe represents a deforma-
tion of the refracted wavefront of \(n — 1)/2n ~ \/6.
The slight wedge in the plate, which is superimposed on
the Kerber profile, is much too slight to give rise to a
detectable chromatic effect and in no way affects the
performance of the Schmidt camera.

Fig. 7. Fringes of equal thickness (mounting 1) of a plate made
by the dioptric elasticity method.

Fig. 8. Fringes of equal thickness (mounting 2) of a plate made
by the dioptric elasticity method.
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Conclusions

Beside the advantage of a profile as smooth as that of
a spherical surface, the dioptric elasticity method gives
—for small thickness and at the price of a slight amount
of complication in the initial setup—correcting plates
or lenses that are highly aspheric (F/1) with a fabrica-
tion time of the same order of magnitude as for spherical
lenses. Although this method has been extremely use-
ful for us in the production of small and medium diam-
eter optics, it was conceived essentially for large aper-
ture plates.!?

The deformation of both faces is often advanta-
geous, and, when necessary, the two surfaces that are
calculated can be corrected in such a way as to cancel
out rigorously the effects due to the plates own weight.
It is possible to obtain numerous other profiles and to
further increase the precision of the deformation by
working with an ambiant pressure of several atmo-
spheres. Tinally, we note that correctors have been
made recently using aspherical plates for improving the
off-axis image quality for Newtonian and Cassegrainian
foci of large telescopes,*~1 and that the dioptric elas-
tieity method would seem to be well suited for fabricat-
ing such optical components.

TFig. 9. Region of § Ori (lower right) m, = 2.5 and € Ori (upper

left) m, = 1.7 photographed with a F/1.5 Schmidt system.

Corrector plate in BSC B1664 of 24-cm aperture produced with a

pressure ratio n = 6. Kodak 11aO, 3 min, no filter. The ab-

sence of circles around bright stars attests to the continuity of the
surface of the plate.
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Fig. 10. Fringes of equal thickness of a plate figured to F/1.1.

I wish to thank C. Fehrenbach and A. Baranne who
encouraged this project in many ways and who made
available the facilities of the Marseille Observatory as
well as those of the Haute-Provence Observatory; and
G. Courtés who greatly supported this work by making
the facilities of the Laboratoire d’Astronomie Spatiale
available for the first practical trials. G. Moreaux was
responsible for the fabrication of the first plates and
greatly aided with many of the initial practical problems.

J. Caplan translated this article into English.

References

1. C. G. Wynne, J. Opt. Soc. Am. 59, 572 (1969).

2. J. G. Baker, J. Am. Philos. Soc. 82, 339 (1940).

3. C. R. Burch, Monthly Notices Roy. Astron. Soc. 102, 159

(1942).
4. D. R. Montgomery and L. A. Adams, Appl. Opt. 9, 277
(1970).
5. G. Courtes, in New Techniques in Space Astronomy, F. Labuhn
and R. Liist, Eds. (International Union of Astronomy, Paris,
1971).
. American Patent 969,785 (1910).
. B. Schmidt, Mitt. Hamburger Sternv. 7, 15 (1932).
. A. Kerber, Central Zeit, f. Opt. und Mech. p. 157 (1886).
. H. Chrétien, Calcul des combinaisons optiques J. & R. Sennac,
Eds. (1959) p. 349.
10. G. Lemaitre, D. E. A., Fac. Sc. Marseille (unpublished)
(1968); Compt. Rend. t. 270A, 226 (1970).

11. G. Lemaitre, ESO Bull. No. 8, 21 (1971).

12. D. E. Gray, Ed., American Institute of- Physics Handbook
(McGraw-Hill, New York, 1963).

13. French Patent, ANVAR 70,19,261 (1969).

14. 8. C. B. Gascoigne, The Observatory 85, 79 (1965).

15. D. H. Schulte, Appl. Opt. 5, 309 (1966).

16. A. Pourcelot, Compt. Rend. t. 262B, 982 (1966).

17. H. Kéhler, ESO Bull. No. 2, 13 (1967).

[F=lNe S =)



