Contents

Notations .. xix

1 Introduction to Optics and Elasticity 1
 1.1 Optics and Telescopes – Historical Introduction 1
 1.1.1 The Greek Mathematicians and Conics 1
 1.1.2 The Persian Mathematicians and Mirrors 3
 1.1.3 End of European Renaissance and Birth of Telescopes .. 5
 1.1.4 Refractive Telescopes 6
 1.1.5 Reflective Telescopes 13
 1.2 Snell’s Law and Glass Dispersion 26
 1.3 Fermat’s Principle ... 29
 1.4 Gaussian Optics and Conjugate Distances 31
 1.4.1 Diopter of Curvature \(c = 1/R \) 32
 1.4.2 Mirror in Medium \(n \) 34
 1.4.3 Power of Combined Systems 35
 1.4.4 Lens in Air or in Vacuum 35
 1.4.5 Afocal Systems .. 36
 1.4.6 Pupils and Principal Rays 37
 1.4.7 Aperture Ratio or Focal Ratio 37
 1.5 Lagrange Invariant 38
 1.6 Étendue Invariant and Lagrange Invariant 39
 1.6.1 Lagrange Invariant 39
 1.6.2 Étendue Invariant 39
 1.6.3 Equivalence of the Étendue and Lagrange Invariants ... 40
 1.7 Analytical Representation of Optical Surfaces 41
 1.7.1 Conicoids ... 42
 1.7.2 Spheroids .. 43
 1.7.3 Non-Axisymmetric Surfaces and Zernike Polynomials ... 43
 1.8 Seidel Representation of Third-Order Aberrations 45
 1.8.1 The Seidel Theory 45
 1.8.2 Seidel Aberration Modes – Elastic Deformation Modes .. 49
 1.8.3 Zernike rms Polynomials 50
 1.9 Stigmatism, Aplanatism, and Anastigmatism 52
 1.9.1 Stigmatism .. 52
1.9.2 Aplanatism and Abbe’s Sine Condition 55
1.9.3 Anastigmatism 59
1.10 Petzval Curvature and Distortion 62
 1.10.1 Petzval Curvature 62
 1.10.2 Distortion 64
1.11 Diffraction 65
 1.11.1 The Diffraction Theory 66
 1.11.2 Diffraction from a Circular Aperture 68
 1.11.3 Diffraction from an Annular Aperture 71
 1.11.4 Point Spread Function (PSF) and Diffracted Aberrations . 71
 1.11.5 Diffraction-Limited Criteria and Wavefront Tolerances .. 72
1.12 Some Image Processor Options 75
 1.12.1 Human Eye 76
 1.12.2 Eyepiece 77
 1.12.3 Interferometer 77
 1.12.4 Coronograph 78
 1.12.5 Polarimeter 78
 1.12.6 Slit Spectrograph 78
 1.12.7 Slitless Spectrograph 79
 1.12.8 Multi-Object Spectroscopy with Slits or Fiber Optics ... 80
 1.12.9 Integral Field Spectrographs 81
 1.12.10 Back-Surface Mirrors 84
 1.12.11 Field Derotator 85
 1.12.12 Pupil Derotator 86
 1.12.13 Telescope Field Corrector 86
 1.12.14 Atmospheric Dispersion Compensator 87
 1.12.15 Adaptive Optics 89
1.13 Elasticity Theory 91
 1.13.1 Historical Introduction 91
 1.13.2 Elasticity Constants of Isotropic Materials 101
 1.13.3 Displacement Vector and Strain Tensor 104
 1.13.4 The Stress-Strain Linear Relations and Strain Energy 105
 1.13.5 Uniform Torsion of a Rod and Strain Components 107
 1.13.6 Love-Kirchhoff Hypotheses and Thin Plate Theory 110
 1.13.7 Bending of Thin Plates and Developable Surfaces 111
 1.13.8 Bending of Thin Plates and Non-developable Surfaces ... 116
 1.13.9 Bending of Rectangular Plates of Constant Thickness 121
 1.13.10 Axisymmetric Bending of Circular Plates of Constant Thickness 123
 1.13.11 Circular Plates and Axisymmetric Loading Manifolds 124
 1.13.12 Deformation of a Plate in a Gravity Field 126
 1.13.13 Saint-Venant’s Principle 126
 1.13.14 Computational Modeling and Finite Element Analysis 127
1.14 Active Optics 128
 1.14.1 Spherical Polishing 128
 1.14.2 Optical Surfaces Free from Ripple Errors 129
2 Dioptrics and Elasticity – Variable Curvature Mirrors (VCMs)

2.1 Thin Circular Plates and Small Deformation Theory

- 2.1.1 Plates of Constant Thickness Distribution – CTD
- 2.1.2 Plates of Variable Thickness Distribution – VTD – Cycloid-Like form – Tulip-Like Form
- 2.1.3 Optical Focal-Ratio Variation
- 2.1.4 Buckling Instability

2.2 Thin Plates and Large Deformation Theory – VTD

2.3 The Mersenne Afocal Two-Mirror Telescopes

2.4 Beam Compressors, Expanders and Cat’s Eyes – Active Optics Pupil Transfers

2.5 VCMs as Field Compensators of Interferometers

- 2.5.1 Fourier Transform Spectrometers
- 2.5.2 Stellar Interferometers and Telescope Arrays

2.6 Construction of VCMs with VTDs

- 2.6.1 Elastic Deformability and Choice of Material Substrate
- 2.6.2 Zoom Range and Choice of a Thickness Distribution
- 2.6.3 Achievement of Boundary Conditions
- 2.6.4 Design and Results with VTD Type 1 – Cycloid-Like Form
- 2.6.5 Design and Results with a VTD Type 2 – Tulip-Like Form

2.7 Plasticity and Hysteresis

- 2.7.1 Stress-Strain Linearization and Plasticity Compensation
- 2.7.2 Hysteresis Compensation and Curvature Control

3 Active Optics and Correction of Third-Order Aberrations

3.1 Elasticity Theory with Constant Thickness Distributions – CTD Class

3.2 Elasticity Theory with Variable Thickness Distributions – VTD Class

3.3 Active Optics and Third-Order Spherical Aberration

- 3.3.1 Configurations in the CTD Class ($A_1 = A_2 = 0$)
- 3.3.2 Configurations in the VTD Class
- 3.3.3 Hybrid Configurations
- 3.3.4 Balance with a Curvature Mode
- 3.3.5 Examples of Application

3.4 Active Optics and Third-Order Coma

- 3.4.1 Configuration in the CTD Class ($A_1 = 0$)
- 3.4.2 Configuration in the VTD Class
- 3.4.3 Hybrid Configurations
- 3.4.4 Balance with a Tilt Mode
3.4.5 Coma from a Pupil and Concave Mirror System 194
3.4.6 Examples of Active Optics Coma Correction 195
3.5 Active Optics and Third-Order Astigmatism 198
 3.5.1 Configuration in the CTD Class ($A_2 = 0$) 199
 3.5.2 Configuration in the VTD Class 200
 3.5.3 Hybrid Configurations 201
 3.5.4 Balance with a Curvature Mode and Cylindric
 Deformations ... 201
 3.5.5 Sagittal and Tangential Ray Fans in Mirror Imaging 202
 3.5.6 Aspheralization of Concave Mirrors – Examples 206
 3.5.7 Concave Diffraction Gratings and Saddle Correction ... 209
 3.5.8 Aspheralization of Single Surface Spectrographs – Example 212
 3.5.9 Higher-Order Aspheralizations of Single Surface
 Spectrographs ... 213
References ... 214

4 Optical Design with the Schmidt Concept – Telescopes and
Spectrographs ... 217
 4.1 The Schmidt Concept 217
 4.1.1 The Class of Two-Mirror Anastigmatic Telescopes 217
 4.1.2 Wavefront Analysis at the Center of Curvature
 of a Spherical Mirror 222
 4.1.3 Wavefront Equation Including the Magnification Ratio M . 225
 4.1.4 Optical Design of Correctors – Preliminary Remarks 225
 4.1.5 Object at Infinity – Null Power Zone Positioning 226
 4.1.6 Optical Equation of Various Corrective Elements 227
 4.1.7 Under or Over Correction Factor s 228
 4.2 Refractive Corrector Telescopes 229
 4.2.1 Off-axis Aberrations and Chromatism of a Singlet
 Corrector .. 229
 4.2.2 Achromatic Doublet-Plate Corrector 232
 4.2.3 Singlet Corrector in Blue and Additional Monocentric
 Filters in Red .. 233
 4.3 All-Reflective Telescopes 234
 4.3.1 Centered Optical Systems used Off-axis 235
 4.3.2 Non-Centered Optical Systems 237
 4.3.3 Gain of Non-Centered Systems Over Centered Designs ... 239
 4.3.4 LAMOST: A Giant Non-Centered Schmidt
 with Active Optics 240
 4.4 All-Reflective Spectrographs with Aspherical Gratings 242
 4.4.1 Comparison of Reflective Grating Spectrograph Designs ... 242
 4.4.2 Diffraction Grating Equation 243
 4.4.3 Axisymmetric Gratings ($\beta_0 = 0$) 244
 4.4.4 Bi-Axial Symmetric Gratings ($\beta_0 \neq 0$) 245
 4.4.5 Flat Fielding of All-Reflective Aspheralized
 Grating Spectrographs 246
5 Schmidt Correctors and Diffraction Gratings Aspherized by Active Optics .. 263
5.1 Various Types of Aspherical Schmidt Correctors 263
5.2 Refractive Correctors .. 263
5.2.1 Third-Order Optical Profile of Refractive Correctors 263
5.2.2 Elasticity and Circular Constant Thickness Plates 264
5.2.3 Refractive Correctors and the Spherical Figuring Method . 265
5.2.4 Refractive Correctors and the Plane Figuring Method 268
5.2.5 Glass Rupture and Loading Time Dependance 273
5.3 Reflective Correctors .. 276
5.3.1 Optical Figure of the Primary Mirror 276
5.3.2 Axisymmetric Circular Primaries with \(k = \frac{3}{2} \) – Vase Form ... 277
5.3.3 Bisymmetric Circular Primaries with \(k = \frac{3}{2} \) – MDM 279
5.3.4 Bisymmetric Circular Primaries with \(k = 0 \) – Tulip Form 279
5.3.5 Bisymmetric Elliptical Primary Mirror with \(k = \frac{3}{2} \) – Vase Form – Biplate Form ... 282
5.3.6 LAMOST: A Segmented Bisymmetric Elliptical Primary . 293
5.4 Aspherized Reflective Diffraction Gratings 293
5.4.1 Active Optics Replication for Grating Aspherization 293
5.4.2 Optical Profile of Aspherical Reflective Gratings 294
5.4.3 Axisymmetric Gratings with \(k = \frac{3}{2} \) and Circular Built-in Submasters ... 296
5.4.4 Axisymmetric Gratings with \(k = 0 \) and Circular Simply Supported Submasters .. 302
5.4.5 Bisymmetric Gratings with \(k = \frac{3}{2} \) and Elliptic Built-in Submasters .. 304
5.4.6 Constructional Replication Condition for Active Optics Process .. 309

References .. 310

6 Theory of Shells and Aspherization of Axisymmetric Mirrors – Meniscus, Vase and Closed Forms 313
6.1 Active Optics Aspherization of Fast f-Ratio Mirrors 313
6.2 Theory of Shallow Spherical Shells 313
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 Equilibrium Equations for Axisymmetric Loadings</td>
<td>314</td>
</tr>
<tr>
<td>6.2.2 General Equation of Shallow Spherical Shells</td>
<td>315</td>
</tr>
<tr>
<td>6.2.3 Kelvin Functions</td>
<td>318</td>
</tr>
<tr>
<td>6.2.4 Flexure and Stress Function of Shallow Spherical Shells</td>
<td>320</td>
</tr>
<tr>
<td>6.3 Variable Thickness Shell and Continuity Conditions</td>
<td>322</td>
</tr>
<tr>
<td>6.3.1 Shell Relations for a Constant Thickness Ring Element</td>
<td>323</td>
</tr>
<tr>
<td>6.3.2 Various Boundaries and Constant Thickness Plain Shells</td>
<td>323</td>
</tr>
<tr>
<td>6.3.3 Some Quantities Involved in a Variable Thickness Shell</td>
<td>324</td>
</tr>
<tr>
<td>6.3.4 Continuity Conditions of a Shell Element Ring</td>
<td>325</td>
</tr>
<tr>
<td>6.4 Edge Cylinder Link and Boundary Conditions</td>
<td>327</td>
</tr>
<tr>
<td>6.4.1 Three Geometrical Configurations and Boundaries</td>
<td>327</td>
</tr>
<tr>
<td>6.4.2 Outer Cylinder Linked to a Meniscus Shell</td>
<td>328</td>
</tr>
<tr>
<td>6.5 Determination of a Variable Thickness Vase Shell</td>
<td>332</td>
</tr>
<tr>
<td>6.5.1 Flexure Representation in the Shell z, r Main Frame</td>
<td>332</td>
</tr>
<tr>
<td>6.5.2 Inverse Problem and Thickness Distribution</td>
<td>333</td>
</tr>
<tr>
<td>6.6 Active Optics Aspherization of Telescope Mirrors</td>
<td>333</td>
</tr>
<tr>
<td>6.6.1 Active Optics Co-addition Law</td>
<td>333</td>
</tr>
<tr>
<td>6.6.2 Parabolization of Concave Mirrors</td>
<td>334</td>
</tr>
<tr>
<td>6.6.3 Concave Paraboloid Mirrors with a Central Hole</td>
<td>339</td>
</tr>
<tr>
<td>6.6.4 Aspherization of Concave Spheroid Mirrors</td>
<td>342</td>
</tr>
<tr>
<td>6.6.5 Aspherization of Cassegrain Mirrors</td>
<td>345</td>
</tr>
<tr>
<td>6.6.6 Comparison of Various Wide-Field Telescope Designs</td>
<td>350</td>
</tr>
<tr>
<td>6.6.7 Modified-Rumsey Three-Reflection Telescope Mirrors</td>
<td>352</td>
</tr>
<tr>
<td>6.6.8 Mirror Aspherizations of a Large Modified-Rumsey Telescope</td>
<td>360</td>
</tr>
<tr>
<td>References</td>
<td>363</td>
</tr>
<tr>
<td>7 Active Optics with Multimode Deformable Mirrors (MDM) Vase and Meniscus Forms</td>
<td>365</td>
</tr>
<tr>
<td>7.1 Introduction – Clebsch-Seidel Deformation Modes</td>
<td>365</td>
</tr>
<tr>
<td>7.2 Elasticity and Vase-Form MDMs</td>
<td>366</td>
</tr>
<tr>
<td>7.3 Elasticity and Meniscus-Form MDMs</td>
<td>374</td>
</tr>
<tr>
<td>7.4 Degenerated Configurations and Astigmatism Mode</td>
<td>376</td>
</tr>
<tr>
<td>7.4.1 Special Geometry for the Astigmatism Mode</td>
<td>376</td>
</tr>
<tr>
<td>7.4.2 Single Astm 3 Mode and Degenerated Meniscus Form</td>
<td>377</td>
</tr>
<tr>
<td>7.4.3 Single Astm 3 Mode and Degenerated Vase Form</td>
<td>378</td>
</tr>
<tr>
<td>7.5 Meniscus Form and Segments for Large Telescopes</td>
<td>378</td>
</tr>
<tr>
<td>7.5.1 Off-Axis Segments of a Paraboloid Mirror</td>
<td>379</td>
</tr>
<tr>
<td>7.5.2 Off-Axis Segments of a Conicoid Mirror</td>
<td>383</td>
</tr>
<tr>
<td>7.5.3 Segments of the Keck Telescope</td>
<td>384</td>
</tr>
<tr>
<td>7.6 Vase and Meniscus MDMs for Reflective Schmids</td>
<td>385</td>
</tr>
<tr>
<td>7.6.1 Centered Systems with a Circular Vase-Form Primary</td>
<td>385</td>
</tr>
<tr>
<td>7.6.2 Non-Centered Systems and Circular Vase-Form Primary</td>
<td>386</td>
</tr>
<tr>
<td>7.6.3 Non-Centered Systems and Elliptical Vase-Form Primary</td>
<td>388</td>
</tr>
<tr>
<td>7.6.4 In-situ Aspherized Meniscus Segments of LAMOST</td>
<td>388</td>
</tr>
</tbody>
</table>
8 Own Weight Flexure and Figure Control of Telescope Mirrors 413
8.1 Primary Mirror Support Systems Against Gravity 413
8.1.1 Introduction 413
8.1.2 Axial and Lateral Support System Concepts 413
8.1.3 Some Examples of Primary Mirror Geometries 415
8.2 Density and Thermal Constants of Mirror Substrates 416
8.3 Substrates for Large Mirrors 418
8.4 Stiffness and Elastic Deformability Criteria 421
8.4.1 Mirror Materials and Stiffness Criteria 421
8.4.2 Mirror Materials and Elastic Deformability Criterion 422
8.5 Axial Flexure of Large Mirrors Under Gravity 423
8.5.1 Density Distribution of Mirror Support Pads 423
8.5.2 Flexure of a Mirror Sub-Element Supported by a Ring Pad 424
8.5.3 Density Criterion for Pad Distribution – Couder’s Law 428
8.5.4 Other Axial Flexure Features 431
8.5.5 Finite Element Analysis 437
8.6 Lateral Flexure of Large Mirrors Under Gravity 437
8.6.1 Various Supporting Force Distributions 437
8.6.2 Flexure of a Mirror Supported at its Lateral Edge 439
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.3</td>
<td>Other Force Distributions and Skew Surface of Forces</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>8.6.4</td>
<td>Finite Element Analysis</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Active Optics and Active Alignment Controls</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>8.7.1</td>
<td>Introduction and Definitions</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>8.7.2</td>
<td>Monolithic Mirror Telescopes</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>8.7.3</td>
<td>Segmented Mirror Telescopes</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>8.7.4</td>
<td>Cophasing of Future Extremely Large Telescopes</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>Special Cases of Highly Variable Thickness Mirrors</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>8.8.1</td>
<td>Introduction – Mirror Flexure in Fast Tip-Tilt Mode</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>8.8.2</td>
<td>Minimum Flexure in Gravity of a Plate Supported at its Center</td>
<td>453</td>
<td></td>
</tr>
<tr>
<td>8.8.3</td>
<td>Field Stabilization Mirrors and Infrared Wobbling Mirrors</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>8.8.4</td>
<td>Design of Low Weight Wobbling Mirrors</td>
<td>459</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>459</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Singlet Lenses and Elasticity Theory of Thin Plates</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Singlet Lenses</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>9.1.1</td>
<td>Aberrations of a Thin Lens with Spherical Surfaces</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>9.1.2</td>
<td>Stigmatic Lens with Descartes Ovoid and Spherical Surface</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>9.1.3</td>
<td>Aplanatic and Anastigmatic Singlet Lenses</td>
<td>469</td>
<td></td>
</tr>
<tr>
<td>9.1.4</td>
<td>Isoplanatic Singlet Lenses and Remote Pupil</td>
<td>471</td>
<td></td>
</tr>
<tr>
<td>9.1.5</td>
<td>Aspheric Lenses in the Third-Order Theory</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>9.1.6</td>
<td>Power of a Two-Lens System</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Thin Lens Elastically Bent by Uniform Load</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>9.2.1</td>
<td>Equilibrium Equation of the Thin Plate Theory</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>9.2.2</td>
<td>Lens Deformation and Parabolic Thickness Distribution</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>9.2.3</td>
<td>Expansion Representation of the Flexure</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>9.2.4</td>
<td>Maximum Stresses at the Lens Surfaces</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>9.2.5</td>
<td>Lenses with Particular Thickness Distributions</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>9.2.6</td>
<td>Conclusions for Active Optics Aspherization</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>Spectrograph with Single Lens and Corrector Plate</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X-ray Telescopes and Elasticity Theory of Shells</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>X-ray Telescopes</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>10.1.1</td>
<td>Introduction – The Three Wolter Design Forms</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>10.1.2</td>
<td>Basic Stigmatic Paraboloid-Hyperboloid (PH) Telescopes</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>10.1.3</td>
<td>Sine Condition and Wolter-Schwarzschild (WS) Telescopes</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>10.1.4</td>
<td>Aberration Balanced Hyperboloid-Hyperboloid (HH) Telescopes</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>10.1.5</td>
<td>Aberration Balanced Spheroid-Spheroid (SS) Telescopes</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>10.1.6</td>
<td>Existing and Future Grazing Incidence X-ray Telescopes</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Elasticity Theory of Axisymmetric Cylindrical Shells</td>
<td>501</td>
<td></td>
</tr>
</tbody>
</table>